This work offers detailed discussions on all aspects of acousto-optic deflectors, modulators and tunable filters, emphasizing hands-on procedures for design, fabrication and testing. It contains previously unpublished treatments of acousto-optic device design and impedance matching, permitting the actual design of real devices and device-matching circuits.
How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines making optical engineering possible, including nanotechnology, MEMS, (MOEMS), and biotechnology. Integrates Coverage of MOEMS, Optics, and Nanobiotechnology—and Their Market Applications Providing an unprecedented interdisciplinary perspective of optics technology, this book describes everything from core principles and fundamental relationships, to emerging technologies and practical application of devices and systems—including fiber-optic sensors, integrated and electro-optics, and specialized military applications. The author places special emphasis on: Fiber sensor systems Electro-optics and acousto-optics Optical computing and signal processing Optical device performance Thin film magnetic memory MEMS, MOEMS, nano- and bionanotechnologies Optical diagnostics and imaging Integrated optics Design constraints for materials, manufacturing, and application space Bridging the technology gaps between interrelated fields, this reference is a powerful tool for students, engineers and scientists in the electrical, chemical, mechanical, biological, aerospace, materials, and optics fields. Its value also extends to applied physicists and professionals interested in the relationships between emerging technologies and cross-disciplinary opportunities. Author Mark A. Mentzer is a pioneer in the field of optical engineering. He is a senior research scientist at the U.S. Army Research Laboratory in Maryland. Much of his current work involves extending the fields of optical engineering and solid state physics into the realm of biochemistry and molecular biology, as well as structured research in biophotonics.
Optical Fiber Sensors: Advanced Techniques and Applications describes the physical principles of, and latest developments in, optical fiber sensors. Providing a fundamental understanding of the design, operation, and practical applications of fiber optic sensing systems, this book: Discusses new and emerging areas of research including photonic crystal fiber sensors, micro- and nanofiber sensing, liquid crystal photonics, acousto-optic effects in fiber, and fiber laser-based sensing Covers well-established areas such as surface plasmon resonance sensors, interferometric fiber sensors, polymer fiber sensors, Bragg gratings in polymer and silica fibers, and distributed fiber sensors Explores humidity sensing applications, smart structure applications, and medical applications, supplying detailed examples of the various fiber optic sensing technologies in use Optical Fiber Sensors: Advanced Techniques and Applications draws upon the extensive academic and industrial experience of its contributing authors to deliver a comprehensive introduction to optical fiber sensors with a strong practical focus suitable for undergraduate and graduate students as well as scientists and engineers working in the field.
Guided Wave Optical Components and Devices provides a comprehensive, lucid, and clear introduction to the world of guided wave optical components and devices. Bishnu Pal has collaborated with some of the greatest minds in optics to create a truly inclusive treatise on this contemporary topic. Written by leaders in the field, this book delivers cutting-edge research and essential information for professionals, researchers, and students on emerging topics like microstructured fibers, broadband fibers, polymer fiber components and waveguides, acousto-optic interactions in fibers, higher order mode fibers, nonlinear and parametric process in fibers, revolutionary effects of erbium doped and Raman fiber amplifiers in DWDM and CATV networks, all-fiber network branching component technology platforms like fused fiber couplers, fiber gratings, and side-polished fiber half-couplers, arrayed waveguides, optical MEMS, fiber sensing technologies including safety, civil structural health monitoring, and gyroscope applications. - Accessible introduction to wide range of topics relating to established and emerging optical components - Single-source reference for graduate students in optical engineering and newcomer practitioners, focused on components - Extensive bibliographical information included so readers can get a broad introduction to a variety of optical components and their applications in an optical network
Develops the underlying theory of acousto-optics from first principles, formulating results suitable for subsequent calculations and design. Special attention is given to design procedures for the entire range of acousto-optic devices and a wide variety of applications for these devices is also described. Further topics include bulk wave and thin-film devices, transducer theory, isotropic and birefringent interaction. Suitable for use as a textbook or practical design handbook, includes generous problem sections illustrating important characteristics of TeO2, LN, and GaP.
The concept of acoustic wave is a pervasive one, which emerges in any type of medium, from solids to plasmas, at length and time scales ranging from sub-micrometric layers in microdevices to seismic waves in the Sun's interior. This book presents several aspects of the active research ongoing in this field. Theoretical efforts are leading to a deeper understanding of phenomena, also in complicated environments like the solar surface boundary. Acoustic waves are a flexible probe to investigate the properties of very different systems, from thin inorganic layers to ripening cheese to biological systems. Acoustic waves are also a tool to manipulate matter, from the delicate evaporation of biomolecules to be analysed, to the phase transitions induced by intense shock waves. And a whole class of widespread microdevices, including filters and sensors, is based on the behaviour of acoustic waves propagating in thin layers. The search for better performances is driving to new materials for these devices, and to more refined tools for their analysis.
This work describes all aspects of acousto-optic signal processing, from the theory of acousto-optic interaction and basic devices, to the practical use of frequency- and time-domain signal processing systems. This edition features information on spectrum analysis, signal correlation, signal delay applications, image processing, photonic switching, and more.;College and university bookstores may order five or more copies at a special student price, available on request from Marcel Dekker, Inc.
The field of integrated- or guided-wave optics has experienced significant and continuous growth since its inception in the late 1960s. There has been a considerable increase in research and development activity in this field worldwide and some significant advances in the realization of working in tegrated optic devices and modules have been made in recent years. In fact, there have already been some commercial manufacturing and technical ap plications of such devices and modules. The guided-wave-acoustooptics involving Bragg interactions between guided optical waves and surface acoustic waves is one of the areas of in tegrated-optics that has reached some degree of scientific and technological maturity. This topical volume is devoted to an in-depth treatment of this emerging branch of science and technology. Presented in this volume are concise treatments on bulk-wave acoustooptics, guided-wave optics, and surface acoustic waves, and detailed studies of guided-wave acoustooptic Bragg diffraction in three promising material substrates, namely, LiNb0 , 3 ZnO/Si0 , and GaAs, the resulting wide band modulators and deflectors, 2 and applications. The chapters cover not only the basic principles and the oretical analysis, but also the design, fabrication, and measurement of the resulting devices and modules, and their applications.