From one of the world's leading experts on digital imaging, this real-world guide provides hard-to-find information vital to everyone from programmers to computer artists. The CD-ROM's complete programming examples let users test the included algorithms and fine-tune them to create custom applications.Howard Burdick focuses on the hands-on aspects of digital imaging and practical applications in areas such as business, entertainment, and medicine. Digital cameras, scanners, and laser film recorders are covered, as well as all important related topics.
Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of traditional imaging methods. Filling a gap in the literature, Perceptual Digital Imaging: Methods and Applications comprehensively covers the system design, implementation, and application aspects of this emerging specialized area. It gives readers a strong, fundamental understanding of theory and methods, providing a foundation on which solutions for many of the most interesting and challenging imaging problems can be built. The book features contributions by renowned experts who present the state of the art and recent trends in image acquisition, processing, storage, display, and visual quality evaluation. They detail advances in the field and explore human visual system-driven approaches across a broad spectrum of applications, including: Image quality and aesthetics assessment Digital camera imaging White balancing and color enhancement Thumbnail generation Image restoration Super-resolution imaging Digital halftoning and dithering Color feature extraction Semantic multimedia analysis and processing Video shot characterization Image and video encryption Display quality enhancement This is a valuable resource for readers who want to design and implement more effective solutions for cutting-edge digital imaging, computer vision, and multimedia applications. Suitable as a graduate-level textbook or stand-alone reference for researchers and practitioners, it provides a unique overview of an important and rapidly developing research field.
An explanation of colour technology for electronic imaging at the system level, including tools for colour image processing, tools for digital image processing that affect image quality, and applications.
\- Preface - List of Figures - List of Tables - List of Acronyms and Abbreviations - Preface - Introduction - Basics of Noncontact Thermal Measurement - Matching the Instrument to the Application - Instruments Overview - Using IR Sensing and Imaging Instruments - Introduction to Applications - Plant Condition Monitoring and Predictive Maintenance - Buildings and Infrastructure - Materials Testing - Product and Process Monitoring Control - Night Vision, Security, and Surveillance - Life Sciences Thermography - Appendix A: Commercial Instrument Performance Characteristics - Appendix B: Manufacturers of IR Sensing and Imaging Instruments - Appendix C: Table of Generic Normal Emissivities of Materials - Appendix D: A Glossary of Terms for the Infrared Thermographer
This edited book presents state-of-the-art research on imaging sensors covering a wide frequency range and different sensing modalities and applications.
Computer Imaging: Digital Image Analysis and Processing brings together analysis and processing in a unified framework, providing a valuable foundation for understanding both computer vision and image processing applications. Taking an engineering approach, the text integrates theory with a conceptual and application-oriented style, allowing you to immediately understand how each topic fits into the overall structure of practical application development. Divided into five major parts, the book begins by introducing the concepts and definitions necessary to understand computer imaging. The second part describes image analysis and provides the tools, concepts, and models required to analyze digital images and develop computer vision applications. Part III discusses application areas for the processing of images, emphasizing human visual perception. Part IV delivers the information required to apply a CVIPtools environment to algorithm development. The text concludes with appendices that provide supplemental imaging information and assist with the programming exercises found in each chapter. The author presents topics as needed for understanding each practical imaging model being studied. This motivates the reader to master the topics and also makes the book useful as a reference. The CVIPtools software integrated throughout the book, now in a new Windows version, provides practical examples and encourages you to conduct additional exploration via tutorials and programming exercises provided with each chapter.
The multi-billion dollar industry of digital imaging technology is an active research area with applications in our everyday lives in products such as digital cameras, scanners, printers and display systems. This book presents an introduction to the fundamentals of digital imaging, with emphasis on the basic operations of image capture and display of monochrome and colour images. The authors balance the mathematical description of real problems with practical examples. With a colour-plate section and real-world applications, this book is suitable for graduate students taking courses in digital imaging in electrical engineering and computer science departments. It will also be a useful reference for practitioners in industry.
A comprehensive and practical analysis and overview of the imaging chain through acquisition, processing and display The Handbook of Digital Imaging provides a coherent overview of the imaging science amalgam, focusing on the capture, storage and display of images. The volumes are arranged thematically to provide a seamless analysis of the imaging chain from source (image acquisition) to destination (image print/display). The coverage is planned to have a very practical orientation to provide a comprehensive source of information for practicing engineers designing and developing modern digital imaging systems. The content will be drawn from all aspects of digital imaging including optics, sensors, quality, control, colour encoding and decoding, compression, projection and display. Contains approximately 50 highly illustrated articles printed in full colour throughout Over 50 Contributors from Europe, US and Asia from academia and industry The 3 volumes are organized thematically for enhanced usability: Volume 1: Image Capture and Storage; Volume 2: Image Display and Reproduction, Hardcopy Technology, Halftoning and Physical Evaluation, Models for Halftone Reproduction; Volume 3: Imaging System Applications, Media Imaging, Remote Imaging, Medical and Forensic Imaging 3 Volumes www.handbookofdigitalimaging.com
Computational photography refers broadly to imaging techniques that enhance or extend the capabilities of digital photography. This new and rapidly developing research field has evolved from computer vision, image processing, computer graphics and applied optics—and numerous commercial products capitalizing on its principles have already appeared in diverse market applications, due to the gradual migration of computational algorithms from computers to imaging devices and software. Computational Photography: Methods and Applications provides a strong, fundamental understanding of theory and methods, and a foundation upon which to build solutions for many of today's most interesting and challenging computational imaging problems. Elucidating cutting-edge advances and applications in digital imaging, camera image processing, and computational photography, with a focus on related research challenges, this book: Describes single capture image fusion technology for consumer digital cameras Discusses the steps in a camera image processing pipeline, such as visual data compression, color correction and enhancement, denoising, demosaicking, super-resolution reconstruction, deblurring, and high dynamic range imaging Covers shadow detection for surveillance applications, camera-driven document rectification, bilateral filtering and its applications, and painterly rendering of digital images Presents machine-learning methods for automatic image colorization and digital face beautification Explores light field acquisition and processing, space-time light field rendering, and dynamic view synthesis with an array of cameras Because of the urgent challenges associated with emerging digital camera applications, image processing methods for computational photography are of paramount importance to research and development in the imaging community. Presenting the work of leading experts, and edited by a renowned authority in digital color imaging and camera image processing, this book considers the rapid developments in this area and addresses very particular research and application problems. It is ideal as a stand-alone professional reference for design and implementation of digital image and video processing tasks, and it can also be used to support graduate courses in computer vision, digital imaging, visual data processing, and computer graphics, among others.