Applications of Centre Manifold Theory

Applications of Centre Manifold Theory

Author: J. Carr

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 152

ISBN-13: 1461259290

DOWNLOAD EBOOK

These notes are based on a series of lectures given in the Lefschetz Center for Dynamical Systems in the Division of Applied Mathematics at Brown University during the academic year 1978-79. The purpose of the lectures was to give an introduction to the applications of centre manifold theory to differential equations. Most of the material is presented in an informal fashion, by means of worked examples in the hope that this clarifies the use of centre manifold theory. The main application of centre manifold theory given in these notes is to dynamic bifurcation theory. Dynamic bifurcation theory is concerned with topological changes in the nature of the solutions of differential equations as para meters are varied. Such an example is the creation of periodic orbits from an equilibrium point as a parameter crosses a critical value. In certain circumstances, the application of centre manifold theory reduces the dimension of the system under investigation. In this respect the centre manifold theory plays the same role for dynamic problems as the Liapunov-Schmitt procedure plays for the analysis of static solutions. Our use of centre manifold theory in bifurcation problems follows that of Ruelle and Takens [57) and of Marsden and McCracken [51).


An Introduction to Manifolds

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

Published: 2010-10-05

Total Pages: 426

ISBN-13: 1441974008

DOWNLOAD EBOOK

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.


Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory

Author: Yuri Kuznetsov

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 648

ISBN-13: 1475739788

DOWNLOAD EBOOK

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.


Bifurcation Theory of Impulsive Dynamical Systems

Bifurcation Theory of Impulsive Dynamical Systems

Author: Kevin E.M. Church

Publisher: Springer Nature

Published: 2021-03-24

Total Pages: 388

ISBN-13: 3030645339

DOWNLOAD EBOOK

This monograph presents the most recent progress in bifurcation theory of impulsive dynamical systems with time delays and other functional dependence. It covers not only smooth local bifurcations, but also some non-smooth bifurcation phenomena that are unique to impulsive dynamical systems. The monograph is split into four distinct parts, independently addressing both finite and infinite-dimensional dynamical systems before discussing their applications. The primary contributions are a rigorous nonautonomous dynamical systems framework and analysis of nonlinear systems, stability, and invariant manifold theory. Special attention is paid to the centre manifold and associated reduction principle, as these are essential to the local bifurcation theory. Specifying to periodic systems, the Floquet theory is extended to impulsive functional differential equations, and this permits an exploration of the impulsive analogues of saddle-node, transcritical, pitchfork and Hopf bifurcations. Readers will learn how techniques of classical bifurcation theory extend to impulsive functional differential equations and, as a special case, impulsive differential equations without delays. They will learn about stability for fixed points, periodic orbits and complete bounded trajectories, and how the linearization of the dynamical system allows for a suitable definition of hyperbolicity. They will see how to complete a centre manifold reduction and analyze a bifurcation at a nonhyperbolic steady state.


Dynamical Systems

Dynamical Systems

Author: Pierre N.V. Tu

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 257

ISBN-13: 3662027798

DOWNLOAD EBOOK

Dynamic tools of analysis and modelling are increasingly used in Economics and Biology and have become more and more sophisticated in recent years, to the point where the general students without training in Dynamic Systems (DS) would be at a loss. No doubt they are referred to the original sources of mathematical theorems used in the various proofs, but the level of mathematics is generally beyond them. Students are thus left with the burden of somehow understanding advanced mathematics by themselves, with· very little help. It is to these general students, equipped only with a modest background of Calculus and Matrix Algebra that this book is dedicated. It aims at providing them with a fairly comprehensive box of dynamical tools they are expected to have at their disposal. The first three Chapters start with the most elementary notions of first and second order Differential and Difference Equations. For these, no matrix theory and hardly any calculus are needed. Then, before embarking on linear and nonlinear DS, a review of some Linear Algebra in Chapter 4 provides the bulk of matrix theory required for the study of later Chapters. Systems of Linear Differ ential Equations (Ch. 5) and Difference Equations (Ch. 6) then follow to provide students with a good background in linear DS, necessary for the subsequent study of nonlinear systems. Linear Algebra, reviewed in Ch. 4, is used freely in these and subsequent chapters to save space and time.


Surgery on Compact Manifolds

Surgery on Compact Manifolds

Author: Charles Terence Clegg Wall

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 321

ISBN-13: 0821809423

DOWNLOAD EBOOK

The publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.


Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems

Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems

Author: Mariana Haragus

Publisher: Springer Science & Business Media

Published: 2010-11-23

Total Pages: 338

ISBN-13: 0857291122

DOWNLOAD EBOOK

An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.


Function Theory on Symplectic Manifolds

Function Theory on Symplectic Manifolds

Author: Leonid Polterovich

Publisher:

Published: 2014

Total Pages: 203

ISBN-13: 9781470419318

DOWNLOAD EBOOK

Cover -- Title page -- Contents -- Preface -- Three wonders of symplectic geometry -- 0-rigidity of the Poisson bracket -- Quasi-morphisms -- Subadditive spectral invariants -- Symplectic quasi-states and quasi-measures -- Applications of partial symplectic quasi-states -- A Poisson bracket invariant of quadruples -- Symplectic approximation theory -- Geometry of covers and quantum noise -- Preliminaries from Morse theory -- An overview of Floer theory -- Constructing subadditive spectral invariants -- Bibliography -- Nomenclature -- Subject index -- Name index -- Back Cover


Model Emergent Dynamics in Complex Systems

Model Emergent Dynamics in Complex Systems

Author: A. J. Roberts

Publisher: SIAM

Published: 2014-12-18

Total Pages: 760

ISBN-13: 1611973562

DOWNLOAD EBOOK

Arising out of the growing interest in and applications of modern dynamical systems theory, this book explores how to derive relatively simple dynamical equations that model complex physical interactions. The author?s objectives are to use sound theory to explore algebraic techniques, develop interesting applications, and discover general modeling principles. Model Emergent Dynamics in Complex Systems unifies into one powerful and coherent approach the many varied extant methods for mathematical model reduction and approximation. Using mathematical models at various levels of resolution and complexity, the book establishes the relationships between such multiscale models and clarifying difficulties and apparent paradoxes and addresses model reduction for systems, resolves initial conditions, and illuminates control and uncertainty. The basis for the author?s methodology is the theory and the geometric picture of both coordinate transforms and invariant manifolds in dynamical systems; in particular, center and slow manifolds are heavily used. The wonderful aspect of this approach is the range of geometric interpretations of the modeling process that it produces?simple geometric pictures inspire sound methods of analysis and construction. Further, pictures drawn of state spaces also provide a route to better assess a model?s limitations and strengths. Geometry and algebra form a powerful partnership and coordinate transforms and manifolds provide a powerfully enhanced and unified view of a swathe of other complex system modeling methodologies such as averaging, homogenization, multiple scales, singular perturbations, two timing, and WKB theory.