Application of the 3-D Hydro-Mechanical Model GEOFRAC in Enhanced Geothermal Systems

Application of the 3-D Hydro-Mechanical Model GEOFRAC in Enhanced Geothermal Systems

Author: Alessandra Vecchiarelli

Publisher:

Published: 2013

Total Pages: 171

ISBN-13:

DOWNLOAD EBOOK

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristic of GEOFRAC is that it is based on statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E[A]. Recent developments in GEOFRAC allow the user to calculate the flow in a fractured medium. For this purpose the fractures are modeled as parallel plates and the flow rate can be calculated using the Poisseuille equation. This thesis explores the possibility of the application of GEOFRAC to model a geothermal reservoir. After modeling the fracture flow system of the reservoir, it is possible to obtain the production flow rate. A parametric study was conducted in order to check the sensitivity of the output of the model. An attempt to explain how aperture, width and rotation (orientation distribution) of the fractures influence the resulting flow rate in the production well is presented. GEOFRAC is a structured MATLAB code composed of more than 100 functions. A GUI was created in order to make GEOFRAC more accessible to the users. Future improvements are the keys for a powerful tool that will let GEOFRAC to be used to optimize the location of the injection and production wells in a geothermal system.


Geoenergy Modeling III

Geoenergy Modeling III

Author: Norihiro Watanabe

Publisher: Springer

Published: 2016-11-10

Total Pages: 109

ISBN-13: 3319465813

DOWNLOAD EBOOK

This book focuses on numerical modeling of deep hydrothermal and petrothermal systems in fractured georeservoirs for utilization in Geothermal Energy applications. The authors explain the particular challenges and approaches to modeling heat transport and high-throughput flow in multiply fractured porous rock formations. In order to help readers gain a system-level understanding of the necessary analysis, the authors include detailed examples of growing complexity as the techniques explained in the text are introduced. The coverage culminates with the fully-coupled analysis of real deep geothermal test-sites located in Germany and France.


Thermo-Hydro-Mechanical (THM) coupled simulations of innovative enhanced geothermal systems for heat and electricity production as well as energy storage

Thermo-Hydro-Mechanical (THM) coupled simulations of innovative enhanced geothermal systems for heat and electricity production as well as energy storage

Author: Muhammad Haris

Publisher: Cuvillier Verlag

Published: 2022-08-05

Total Pages: 175

ISBN-13: 3736966601

DOWNLOAD EBOOK

Enhanced geothermal systems (EGSs) evolved from the hot dry rock can provide a significant amount of energy while shifting towards negligible carbon emission. In order to investigate some important issues related to EGS, several scenarios have been analyzed using powerful numerical tools (FLAC3Dplus and TOUGH2MP-TMVOC). While conducting multiple hydraulic fracturing, it is observed that the newly created successive fracture’s configuration highly depends on the previous one under the influence of stress shadow. Therefore, the assumption of using similar multiple fracture geometries and shapes for energy exploitation may lead to erroneous estimations. A case study has been performed further using the engineering data of the GeneSys project in the North German Basin. Numerous scenarios have been investigated, and the optimized EGS project is proposed, whose installed power capacity of one side of the injection well declines from 7.17 MW to 5.08 MW over 30 years. Moreover, the Levelized cost of electricity is calculated at 5.46 c$/kWh, which is quite economical compared to the current electricity price. Finally, an innovative concept of regenerative EGS is proposed by storing surplus renewable energy in multiple hydraulic fractures that can reduce the reservoir temperature reduction rate. The results of continuous injection/production cycles depicted that a regenerative EGS could be achieved in reality.


Further Development and Application of GEOFRAC Flow to a Geothermal Reservoir

Further Development and Application of GEOFRAC Flow to a Geothermal Reservoir

Author: Alessandra Vecchiarelli

Publisher:

Published: 2015

Total Pages: 174

ISBN-13:

DOWNLOAD EBOOK

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristic of GEOFRAC is that is based on statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). Recent developments in GEOFRAC allow the user to calculate the flow in a fractured medium. For this purpose the fractures are modeled as parallel plates and the flow rate can be calculated using the Poisseuille equation. This thesis explores the possibility of the application of GEOFRAC to model a geothermal reservoir. After modeling the fracture flow system of the reservoir, it is possible to obtain the flow rate in production. A parametric study was conducted in order to check the sensitivity of the output of the model and to explain how aperture, width and rotation (orientation distribution) of the fractures influence the resulting flow rate in the production well. A case study is also presented in this thesis in order to confirm the applicability of GEOFRAC to a real case. GEOFRAC is a structured MATLAB code composed of more than 100 functions. Examples on how to obtain P3 2 and E(A) from fracture trace lengths on outcrops are presented in the Appendix 1. A GUI was created in order to make GEOFRAC more accessible to the users. It should also be kept in mind that future improvements are the keys for a powerful tool that will let GEOFRAC to be used to optimize the location of the injection and production well in a geothermal system.


Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

Author:

Publisher:

Published: 2014

Total Pages: 252

ISBN-13:

DOWNLOAD EBOOK

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, "Recovery Act - Decision Aids for Geothermal Systems", GEOFRAC was further developed into GEOFRAC-FLOW as has been reported in the reports, "Decision Aids for Geothermal Systems - Fracture Pattern Modelling" and "Decision Aids for Geothermal Systems - Fracture Flow Modeling". GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.


Experimental Study of Thermal-hydro-mechanical Interaction for Enhanced Geothermal System

Experimental Study of Thermal-hydro-mechanical Interaction for Enhanced Geothermal System

Author: Roshan Poudel

Publisher:

Published: 2017

Total Pages: 122

ISBN-13: 9780438564626

DOWNLOAD EBOOK

With the growing national and international interest in alternative energy resources, geothermal energy has attracted more research attentions, especially in the west region of the United States, where many abundant geothermal resources are yet to be explored. Geothermal energy is gaining more supports throughout the world because it is an affordable and environmentally friendly source of heat. The research goal of this experimental study is to facilitate the application of enhanced geothermal system through the understanding of thermal effects on the geomechanical and hydraulic characteristics of a geothermal rock reservoir. A small-scale experiment was conducted using a geometric scale model of 1:6. Concrete was used to simulate the rock for experimental purposes. The concrete was prepared in slabs to simulate rock mass with two designed horizontal discontinuities. The simulated reservoir was instrumented with strain gauges to measure strain, thermocouples to measure temperature, and piezometers to measure pore water pressure. The reservoir was connected tightly to a water circulation system that was equipped with a valve, a flow meter, a digital circulating water bath, two thermocouples, two pressure meters, and a water pump. Based on a test matrix of a constant water flow rate, three injected water temperatures (i.e., 15°C, 25°C and 35°C) and three reservoir temperatures (i.e., 50°C, 60°C and 70°C), a minimum nine sequential experiments were conducted, starting with the lowest water and reservoir temperatures. All measurements, including strains, temperatures, water pressures, and displacements, were recorded as a function of experiment duration. The results show that strain, pore water pressure, and head loss are related to the temperature difference of injection water and reservoir.


Numerical Model Studies of Enhanced Geothermal Systems

Numerical Model Studies of Enhanced Geothermal Systems

Author: Ivan Guillermo Vazquez Rubio

Publisher:

Published: 2016

Total Pages: 204

ISBN-13:

DOWNLOAD EBOOK

Enhanced Geothermal Systems (EGS) are being developed around the world as a method of extraction of thermal energy. A good EGS reservoir should maintain a small thermal drawdown and low water loss. All factors must be considered for optimal levels of energy production and assuring a long life span of the reservoir. It is where numerical simulation models are used as reservoir performance predictive tools to find these parameters. A benchmark problem for the Fenton Hill Phase I EGS was numerically simulated as the first task with four runs contemplating a single planar penny shape fracture in the rockmass with a given lateral extension. The first run evaluates a constant aperture fracture while the second run deals with a variable aperture, penny shape fracture. The third and fourth runs evaluate a similar model but with an increased backpressure in the reservoir. The second task is a challenge problem with multiple fractures in Fenton Hill Phase II. The geometry of the fractures had to be determined from the literature data that included dip, strike and depth information. MicroEarthQuakes (MEQ) data were also available from field measurements at Fenton Hill Phase II for graphical matching the fracture positions in the model in 3D AutoCAD. The fluid circulation was modeled assuming planar flow channels and using fine spatial discretization in the fracture volumes. Hydro-Mechanical processes are matched with experimental flow measurements data. Calibration was achieved by matching between the model prediction and the steady state injection flow test experiment at Fenton Hill Phase II.


3D Modeling of Coupled Rock Deformation and Thermo-poro-mechanical Processes in Fractures

3D Modeling of Coupled Rock Deformation and Thermo-poro-mechanical Processes in Fractures

Author: Chakra Rawal

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Problems involving coupled thermo-poro-chemo-mechanical processes are of great importance in geothermal and petroleum reservoir systems. In particular, economic power production from enhanced geothermal systems, effective water-flooding of petroleum reservoirs, and stimulation of gas shale reservoirs are significantly influenced by coupled processes. During such procedures, stress state in the reservoir is changed due to variation in pore fluid pressure and temperature. This can cause deformation and failure of weak planes of the formation with creation of new fractures, which impacts reservoir response. Incorporation of geomechanical factor into engineering analyses using fully coupled geomechanics-reservoir flow modeling exhibits computational challenges and numerical difficulties. In this study, we develop and apply efficient numerical models to solve 3D injection/extraction geomechanics problems formulated within the framework of thermo-poro-mechanical theory with reactive flow. The models rely on combining Displacement Discontinuity (DD) Boundary Element Method (BEM) and Finite Element Method (FEM) to solve the governing equations of thermo-poro-mechanical processes involving fracture/reservoir matrix. The integration of BEM and FEM is accomplished through direct and iterative procedures. In each case, the numerical algorithms are tested against a series of analytical solutions. 3D study of fluid injection and extraction into the geothermal reservoir illustrates that thermo-poro-mechanical processes change fracture aperture (fracture conductivity) significantly and influence the fluid flow. Simulations that consider joint stiffness heterogeneity show development of non-uniform flow paths within the crack. Undersaturated fluid injection causes large silica mass dissolution and increases fracture aperture while supersaturated fluid causes mineral precipitation and closes fracture aperture. Results show that for common reservoir and injection conditions, the impact of fully developed thermoelastic effect on fracture aperture tend to be greater compare to that of poroelastic effect. Poroelastic study of hydraulic fracturing demonstrates that large pore pressure increase especially during multiple hydraulic fracture creation causes effective tensile stress at the fracture surface and shear failure around the main fracture. Finally, a hybrid BEFEM model is developed to analyze stress redistribution in the overburden and within the reservoir during fluid injection and production. Numerical results show that fluid injection leads to reservoir dilation and induces vertical deformation, particularly near the injection well. However, fluid withdrawal causes reservoir to compact. The Mandel-Cryer effect is also successfully captured in numerical simulations, i.e., pore pressure increase/decrease is non-monotonic with a short time values that are above/below the background pore pressure.


Mathematical Theory of Oil and Gas Recovery

Mathematical Theory of Oil and Gas Recovery

Author: P. Bedrikovetsky

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 596

ISBN-13: 9401722056

DOWNLOAD EBOOK

It is a pleasure to be asked to write the foreword to this interesting new book. When Professor Bedrikovetsky first accepted my invitation to spend an extended sabbatical period in the Department of Mineral Resources Engineering at Imperial College of Science, Technology and Medicine, I hoped it would be a period of fruitful collaboration. This book, a short course and a variety of technical papers are tangible evidence of a successful stay in the UK. I am also pleased that Professor Bedrikovetsky acted on my suggestion to publish this book with Kluwer as part of the petroleum publications for which I am Series Editor. The book derives much of its origin from the unpublished Doctor of Science thesis which Professor Bedrikovetsky prepared in Russian while at the Gubkin Institute. The original DSc contained a number of discrete publications unified by an analytical mathematics approach to fluid flow in petroleum reservoirs. During his sabbatical stay at Imperial College, Professor Bedrikovetsky has refined and extended many of the chapters and has discussed each one with internationally recognised experts in the field. He received great encouragement and editorial advice from Dr Gren Rowan, who pioneered analytical methods in reservoir modelling at BP for many years.


Applications of Heat, Mass and Fluid Boundary Layers

Applications of Heat, Mass and Fluid Boundary Layers

Author: R. O. Fagbenle

Publisher: Woodhead Publishing Limited

Published: 2020-02

Total Pages: 530

ISBN-13: 012817949X

DOWNLOAD EBOOK

Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method. This book's multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future. Presents up-to-date research on boundary layers with very practical applications across a diverse mix of industries Includes mathematical analysis to provide detailed explanation and clarity Provides solutions to global energy issues and environmental sustainability