Applications of Raman Spectroscopy to Biology

Applications of Raman Spectroscopy to Biology

Author: M. Ghomi

Publisher: IOS Press

Published: 2012-02-23

Total Pages: 204

ISBN-13: 1614990204

DOWNLOAD EBOOK

Raman spectroscopy has been known and used as a technique for 80 years, originally for the study of inorganic substances. Recent advances in underlying technology, such as lasers, detectors, filters and components, have transformed the technique into a very effective modern tool for studying complex biological problems. Professor Mahmoud Ghomi (of the University of Paris XIII) has edited this book on the applications of Raman spectroscopy to biology, covering in a readily accessible way the area from basic studies to the diagnosis of disease. The early chapters provide background information on basic principles underlying the main Raman methods covered in the book, with information on Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Fluorescence (SEF), as well as giving accounts of applications to biomolecular and cellular investigations. Among the topics covered are studies of drugs and their complexes with biomolecules on nanoparticles, application of SERS to blood analysis, studies of single cells and of applications to human cancer diagnostics.This will be a useful book for experimental scientists in academic, governmental, industrial and clinical environments and for those entering the field of biomolecular spectroscopy.


Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy

Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy

Author: Yuling Wang

Publisher: Elsevier

Published: 2021-09-17

Total Pages: 465

ISBN-13: 012823198X

DOWNLOAD EBOOK

Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy summarizes the principles of surface-enhanced Raman scattering/spectroscopy (SERS) and plasmonic nanomaterials for SERS, with a focus on SERS applications in clinical diagnostics. This book covers the key concepts from the fundamentals, materials, experimental aspects, and applications of SERS in clinical diagnostics with discussions on label-free/direct SERS assay, design and synthesis of SERS nanotags, SERS nanotags for point-of-care diagnostics, microfluidic SERS assay, and in vitro and in vivo sensing and imaging. Written by experts from around the world, this comprehensive volume showcases the recent progress of SERS applications in clinical diagnostics and helps readers understand when and how to use SERS in a clinical setting. Introduces the basics of SERS and suitable nanomaterials for SERS application Gives an overview of the cutting-edge research on SERS applications for clinical diagnosis, including the latest advances in our understanding of underlying principles to enable material design and clinical applications Gradually builds from the fundamental concepts to the applications of SERS for clinical diagnostics


Surface-Enhanced Raman Spectroscopy

Surface-Enhanced Raman Spectroscopy

Author: Marek Prochazka

Publisher: Springer

Published: 2015-12-12

Total Pages: 230

ISBN-13: 3319239929

DOWNLOAD EBOOK

This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to detect and identify small molecules, nucleic acids and proteins, and also for cellular and in vivo sensing.


Surface-Enhanced Vibrational Spectroscopy

Surface-Enhanced Vibrational Spectroscopy

Author: Ricardo Aroca

Publisher: John Wiley & Sons

Published: 2006-05-01

Total Pages: 260

ISBN-13: 9780470035658

DOWNLOAD EBOOK

Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS. Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art Offers interpretations of SEVS spectra for practicing analysts Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst


Frontiers of Surface-Enhanced Raman Scattering

Frontiers of Surface-Enhanced Raman Scattering

Author: Yukihiro Ozaki

Publisher: John Wiley & Sons

Published: 2014-02-19

Total Pages: 466

ISBN-13: 111870357X

DOWNLOAD EBOOK

A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.


Vibrational Spectroscopy in Life Science

Vibrational Spectroscopy in Life Science

Author: Friedrich Siebert

Publisher: John Wiley & Sons

Published: 2008-07-15

Total Pages: 320

ISBN-13: 3527621350

DOWNLOAD EBOOK

The authors describe basic theoretical concepts of vibrational spectroscopy, address instrumental aspects and experimental procedures, and discuss experimental and theoretical methods for interpreting vibrational spectra. It is shown how vibrational spectroscopy provides information on general aspects of proteins, such as structure, dynamics, and protein folding. In addition, the authors use selected examples to demonstrate the application of Raman and IR spectroscopy to specific biological systems, such as metalloproteins, and photoreceptors. Throughout, references to extensive mathematical and physical aspects, involved biochemical features, and aspects of molecular biology are set in boxes for easier reading. Ideal for undergraduate as well as graduate students of biology, biochemistry, chemistry, and physics looking for a compact introduction to this field.


Biochemical Applications of Raman and Resonance Raman Spectroscopes

Biochemical Applications of Raman and Resonance Raman Spectroscopes

Author: P Carey

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 277

ISBN-13: 0323158129

DOWNLOAD EBOOK

Biochemical Applications of Raman and Resonance Raman Spectroscopies focuses on the application of Raman and resonance Raman spectroscopies to biochemical problems. The book reviews biological systems and details the application of Raman spectroscopy to biological molecules such as proteins, nucleic acids, and lipids. It also looks at codevelopments of lasers, optics, and electronics that drive advances in experimental Raman spectroscopy, along with the important ramifications of these advances for biochemical applications. This volume is organized into eight chapters and begins with an overview of the theoretical and experimental aspects of Raman spectroscopy, including a very brief explanation of what Raman and resonance Raman spectroscopies are and a discussion of their advantages and disadvantages for biochemical studies. The explanation of the Raman and resonance Raman effects is taken up in more detail in the next chapter, which develops the concept of the vibrational motions of molecules by initially considering mechanical ""ball and spring"" models and goes on to use this concept to formulate a classical model for Raman scattering. The resonance Raman effect is then described by another model which emphasizes the discrete or quantized energy levels available to a molecule. The reader is also introduced to the experimental aspects of Raman spectroscopy and the application of Raman spectroscopy across the entire field of biochemistry. Each chapter contains an outline of the basic chemistry and biochemical nomenclature involved. This book will be of interest to chemists, biochemists, and spectroscopists, as well as graduate students and experienced research workers.


Application of Raman Spectroscopy to Study of Biological Systems

Application of Raman Spectroscopy to Study of Biological Systems

Author: Neva Agarwala

Publisher:

Published: 2017

Total Pages: 156

ISBN-13:

DOWNLOAD EBOOK

Raman spectroscopy is an important tool of molecular characterization based on inelastic scattering of monochromatic light by molecules. Since Raman spectra reflect unique vibrational properties of materials, the method offers a potential of selective molecular identification. Furthermore, surface-enhanced Raman spectroscopy (SERS) also is capable of a high sensitivity, since inelastic scattering of light from the molecules is strongly enhanced when Raman-active molecules are located close to roughened noble metal surfaces. In this thesis, Raman characterization protocols of liquid biological samples are optimized. Raman spectra of two different cell cultures, yeast cells and HeLa cells, were collected and interpreted. The potentiality of SERS enhancement was tested for the cell cultures on substrates containing a plasmonic-active layer. To facilitate interpretation of Raman spectra, water-soluble carbon based materials such as graphene oxide and fullerenol also are characterized, and these results were compared with predictions of the density-functional theory. These studies have demonstrated a proof-of-principle Raman characterization of cell cultures, suggested their spectral band assignments, elucidated differences and similarities in Raman bands between the cell cultures studied, and achieved a pronounced SERS enhancement for HeLa cell analysis.