Stochastic Volatility Modeling

Stochastic Volatility Modeling

Author: Lorenzo Bergomi

Publisher: CRC Press

Published: 2015-12-16

Total Pages: 520

ISBN-13: 1482244071

DOWNLOAD EBOOK

Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c


Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Author: Cheng Few Lee

Publisher: World Scientific

Published: 2020-07-30

Total Pages: 5053

ISBN-13: 9811202400

DOWNLOAD EBOOK

This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.


Uncertain Volatility Models

Uncertain Volatility Models

Author: Robert Buff

Publisher: Springer Science & Business Media

Published: 2002-04-10

Total Pages: 260

ISBN-13: 9783540426578

DOWNLOAD EBOOK

This is one of the only books to describe uncertain volatility models in mathematical finance and their computer implementation for portfolios of vanilla, barrier and American options in equity and FX markets. Uncertain volatility models place subjective constraints on the volatility of the stochastic process of the underlying asset and evaluate option portfolios under worst- and best-case scenarios. This book, which is bundled with software, is aimed at graduate students, researchers and practitioners who wish to study advanced aspects of volatility risk in portfolios of vanilla and exotic options. The reader is assumed to be familiar with arbitrage pricing theory.


Analytically Tractable Stochastic Stock Price Models

Analytically Tractable Stochastic Stock Price Models

Author: Archil Gulisashvili

Publisher: Springer

Published: 2012-09-05

Total Pages: 0

ISBN-13: 9783642312137

DOWNLOAD EBOOK

Asymptotic analysis of stochastic stock price models is the central topic of the present volume. Special examples of such models are stochastic volatility models, that have been developed as an answer to certain imperfections in a celebrated Black-Scholes model of option pricing. In a stock price model with stochastic volatility, the random behavior of the volatility is described by a stochastic process. For instance, in the Hull-White model the volatility process is a geometric Brownian motion, the Stein-Stein model uses an Ornstein-Uhlenbeck process as the stochastic volatility, and in the Heston model a Cox-Ingersoll-Ross process governs the behavior of the volatility. One of the author's main goals is to provide sharp asymptotic formulas with error estimates for distribution densities of stock prices, option pricing functions, and implied volatilities in various stochastic volatility models. The author also establishes sharp asymptotic formulas for the implied volatility at extreme strikes in general stochastic stock price models. The present volume is addressed to researchers and graduate students working in the area of financial mathematics, analysis, or probability theory. The reader is expected to be familiar with elements of classical analysis, stochastic analysis and probability theory.


Modelling and Simulation of Stochastic Volatility in Finance

Modelling and Simulation of Stochastic Volatility in Finance

Author: Christian Kahl

Publisher: Universal-Publishers

Published: 2008

Total Pages: 219

ISBN-13: 1581123833

DOWNLOAD EBOOK

The famous Black-Scholes model was the starting point of a new financial industry and has been a very important pillar of all options trading since. One of its core assumptions is that the volatility of the underlying asset is constant. It was realised early that one has to specify a dynamic on the volatility itself to get closer to market behaviour. There are mainly two aspects making this fact apparent. Considering historical evolution of volatility by analysing time series data one observes erratic behaviour over time. Secondly, backing out implied volatility from daily traded plain vanilla options, the volatility changes with strike. The most common realisations of this phenomenon are the implied volatility smile or skew. The natural question arises how to extend the Black-Scholes model appropriately. Within this book the concept of stochastic volatility is analysed and discussed with special regard to the numerical problems occurring either in calibrating the model to the market implied volatility surface or in the numerical simulation of the two-dimensional system of stochastic differential equations required to price non-vanilla financial derivatives. We introduce a new stochastic volatility model, the so-called Hyp-Hyp model, and use Watanabe's calculus to find an analytical approximation to the model implied volatility. Further, the class of affine diffusion models, such as Heston, is analysed in view of using the characteristic function and Fourier inversion techniques to value European derivatives.


Application of Stochastic Volatility Models in Option Pricing

Application of Stochastic Volatility Models in Option Pricing

Author: Pascal Debus

Publisher:

Published: 2013

Total Pages: 60

ISBN-13: 9783656492559

DOWNLOAD EBOOK

Bachelorarbeit aus dem Jahr 2010 im Fachbereich BWL - Investition und Finanzierung, Note: 1,2, EBS Universitat fur Wirtschaft und Recht, Sprache: Deutsch, Abstract: The Black-Scholes (or Black-Scholes-Merton) Model has become the standard model for the pricing of options and can surely be seen as one of the main reasons for the growth of the derivative market after the models introduction in 1973. As a consequence, the inventors of the model, Robert Merton, Myron Scholes, and without doubt also Fischer Black, if he had not died in 1995, were awarded the Nobel prize for economics in 1997. The model, however, makes some strict assumptions that must hold true for accurate pricing of an option. The most important one is constant volatility, whereas empirical evidence shows that volatility is heteroscedastic. This leads to increased mispricing of options especially in the case of out of the money options as well as to a phenomenon known as volatility smile. As a consequence, researchers introduced various approaches to expand the model by allowing the volatility to be non-constant and to follow a sto-chastic process. It is the objective of this thesis to investigate if the pricing accuracy of the Black-Scholes model can be significantly improved by applying a stochastic volatility model.


Option Pricing Models and Volatility Using Excel-VBA

Option Pricing Models and Volatility Using Excel-VBA

Author: Fabrice D. Rouah

Publisher: John Wiley & Sons

Published: 2012-06-15

Total Pages: 456

ISBN-13: 1118429206

DOWNLOAD EBOOK

This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland


Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes

Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes

Author: Cornelis W Oosterlee

Publisher: World Scientific

Published: 2019-10-29

Total Pages: 1310

ISBN-13: 1786347962

DOWNLOAD EBOOK

This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.