A one-sentence definition of operator theory could be: The study of (linear) continuous operations between topological vector spaces, these being in general (but not exclusively) Fréchet, Banach, or Hilbert spaces (or their duals). Operator theory is thus a very wide field, with numerous facets, both applied and theoretical. There are deep connections with complex analysis, functional analysis, mathematical physics, and electrical engineering, to name a few. Fascinating new applications and directions regularly appear, such as operator spaces, free probability, and applications to Clifford analysis. In our choice of the sections, we tried to reflect this diversity. This is a dynamic ongoing project, and more sections are planned, to complete the picture. We hope you enjoy the reading, and profit from this endeavor.
Many developments on the cutting edge of research in operator theory and its applications are reflected in this collection of original and review articles. Particular emphasis lies on highlighting the interplay between operator theory and applications from other areas, such as multi-dimensional systems and function theory of several complex variables, distributed parameter systems and control theory, mathematical physics, wavelets, and numerical analysis.
This two volume set LNCS 6791 and LNCS 6792 constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.
Many results, both from semi group theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semi group theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while the fundamental generation theorem of Hille and Yosida dates back to the forties. The theory was, from the very beginning, designed as a universal language for partial differential equations and stochastic processes, but at the same time it started to live as an independent branch of operator theory. Nowadays, it still has the same distinctive flavour: it develops rapidly by posing new ‘internal’ questions and in answering them, discovering new methods that can be used in applications. On the other hand, it is influenced by questions from PDEs and stochastic processes as well as from applied sciences such as mathematical biology and optimal control, and thus it continually gathers a new momentum. Researchers and postgraduate students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimization and optimal control will find this volume useful.
Applied Stochastic Processes is a collection of papers dealing with stochastic processes, stochastic equations, and their applications in many fields of science. One paper discusses stochastic systems involving randomness in the system itself that can be a large dynamical multi-input, multi-output system. Examples of a large system are the national economy of a major country or when an acoustic wave is propagating as in the atmosphere, ocean, or sea. Another paper proves that only the average properties of the molecules of biology can be measured with precision in the test tube; and disputes a "simplistic" model of the cell as defined by a miniature Laplaces' universe. The paper notes that the way existing cells are constructed implies that quantum mechanical principles lead to certain questions (about simple experiments) having only statistical answers. Another paper addresses the detection of distributed, fluctuating targets in a reverberation limited, randomly time, and space varying transmission media. This approach is done by using the concepts of "random Green's functions" and the "stochastic Green's function." The collection will prove useful for cellular researchers, mathematicians, physicist, engineers, and academicians in the field of applied mathematics, statistics, and chemistry.
This book contains a selection of carefully refereed research papers, most of which were presented at the fourteenth International Workshop on Operator Theory and its Applications (IWOTA), held at Cagliari, Italy, from June 24-27, 2003. The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.
This book offers peer-reviewed articles from the 19th International Conference on Operator Theory, Summer 2002. It contains recent developments in a broad range of topics from operator theory, operator algebras and their applications, particularly to differential analysis, complex functions, ergodic theory, mathematical physics, matrix analysis, and systems theory. The book covers a large variety of topics including single operator theory, C*-algebras, diffrential operators, integral transforms, stochastic processes and operators, and more.