Application Of High-performance Computing To Earthquake-related Problems

Application Of High-performance Computing To Earthquake-related Problems

Author: Muneo Hori

Publisher: World Scientific

Published: 2024-07-02

Total Pages: 647

ISBN-13: 1800614640

DOWNLOAD EBOOK

With the continued improvements in computing power and digital information availability, we are witnessing the increasing use of high-performance computers to enhance simulations for the forecasting of hazards, disasters, and responses. This major reference work summarizes the theories, analysis methods, and computational results of various earthquake simulations by the use of supercomputers. It covers simulations in the fields of seismology, physical geology, earthquake engineering — specifically the seismic response of structures — and the socioeconomic impact of post-earthquake recovery on cities and societies. Individual chapters address phenomena such as earthquake cycles and plate boundary behavior, tsunamis, structural response to strong ground motion, and post-disaster traffic flow and economic activity. The methods used for these simulations include finite element methods, discrete element methods, smoothed particle hydrodynamics, and multi-agent models, among others.The simulations included in this book provide an effective bird's-eye view of cutting-edge simulations enhanced with high-performance computing for earthquake occurrence, earthquake damage, and recovery from the damage, combining three of the major fields of earthquake studies: earth science, earthquake engineering, and disaster-mitigation-related social science. The book is suitable for advanced undergraduates, graduates, and researchers in these fields.


High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering

High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering

Author: Shinobu Yoshimura

Publisher: Springer

Published: 2015-10-26

Total Pages: 201

ISBN-13: 3319210483

DOWNLOAD EBOOK

Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe. To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows with free surfaces, and fluid-structure interactions, to practical applications with detailed simulation results. The book will offer essential insights for researchers and engineers working in the field of computational seismic/tsunami engineering.


Introduction To Computational Earthquake Engineering (2nd Edition)

Introduction To Computational Earthquake Engineering (2nd Edition)

Author: Muneo Hori

Publisher: World Scientific

Published: 2011-05-18

Total Pages: 438

ISBN-13: 1908978414

DOWNLOAD EBOOK

Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems.


Tools for High Performance Computing 2013

Tools for High Performance Computing 2013

Author: Andreas Knüpfer

Publisher: Springer

Published: 2014-10-06

Total Pages: 130

ISBN-13: 3319081446

DOWNLOAD EBOOK

Current advances in High Performance Computing (HPC) increasingly impact efficient software development workflows. Programmers for HPC applications need to consider trends such as increased core counts, multiple levels of parallelism, reduced memory per core, and I/O system challenges in order to derive well performing and highly scalable codes. At the same time, the increasing complexity adds further sources of program defects. While novel programming paradigms and advanced system libraries provide solutions for some of these challenges, appropriate supporting tools are indispensable. Such tools aid application developers in debugging, performance analysis, or code optimization and therefore make a major contribution to the development of robust and efficient parallel software. This book introduces a selection of the tools presented and discussed at the 7th International Parallel Tools Workshop, held in Dresden, Germany, September 3-4, 2013.


High Performance Computing in Science and Engineering, Garching/Munich 2007

High Performance Computing in Science and Engineering, Garching/Munich 2007

Author: Siegfried Wagner

Publisher: Springer Science & Business Media

Published: 2008-10-22

Total Pages: 700

ISBN-13: 3540691820

DOWNLOAD EBOOK

For the fourth time, the Leibniz Supercomputing Centre (LRZ) and the Com- tence Network for Technical, Scienti c High Performance Computing in Bavaria (KONWIHR) publishes the results from scienti c projects conducted on the c- puter systems HLRB I and II (High Performance Computer in Bavaria). This book reports the research carried out on the HLRB systems within the last three years and compiles the proceedings of the Third Joint HLRB and KONWIHR Result and Reviewing Workshop (3rd and 4th December 2007) in Garching. In 2000, HLRB I was the rst system in Europe that was capable of performing more than one Tera op/s or one billion oating point operations per second. In 2006 it was replaced by HLRB II. After a substantial upgrade it now achieves a peak performance of more than 62 Tera op/s. To install and operate this powerful system, LRZ had to move to its new facilities in Garching. However, the situation regarding the need for more computation cycles has not changed much since 2000. The demand for higher performance is still present, a trend that is likely to continue for the foreseeable future. Other resources like memory and disk space are currently in suf cient abundance on this new system.


High Performance Computing

High Performance Computing

Author: Michèle Weiland

Publisher: Springer

Published: 2019-06-05

Total Pages: 357

ISBN-13: 3030206564

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 34th International Conference on High Performance Computing, ISC High Performance 2019, held in Frankfurt/Main, Germany, in June 2019. The 17 revised full papers presented were carefully reviewed and selected from 70 submissions. The papers cover a broad range of topics such as next-generation high performance components; exascale systems; extreme-scale applications; HPC and advanced environmental engineering projects; parallel ray tracing - visualization at its best; blockchain technology and cryptocurrency; parallel processing in life science; quantum computers/computing; what's new with cloud computing for HPC; parallel programming models for extreme-scale computing; workflow management; machine learning and big data analytics; and deep learning and HPC.


Use Of High Performance Computing In Meteorology - Proceedings Of The Eleventh Ecmwf Workshop

Use Of High Performance Computing In Meteorology - Proceedings Of The Eleventh Ecmwf Workshop

Author: George Mozdzynski

Publisher: World Scientific

Published: 2005-09-20

Total Pages: 323

ISBN-13: 9814480274

DOWNLOAD EBOOK

Geosciences and, in particular, numerical weather prediction are demanding the highest levels of available computer power. The European Centre for Medium-Range Weather Forecasts, with its experience in using supercomputers in this field, organizes every other year a workshop bringing together manufacturers, computer scientists, researchers and operational users to share their experiences and to learn about the latest developments. This volume provides an excellent overview of the latest achievements and plans for the use of new parallel techniques in the fields of meteorology, climatology and oceanography.


Parallel and High Performance Computing

Parallel and High Performance Computing

Author: Robert Robey

Publisher: Simon and Schuster

Published: 2021-06-22

Total Pages: 702

ISBN-13: 1617296465

DOWNLOAD EBOOK

Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours--or even days--of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. about the technology Modern computing hardware comes equipped with multicore CPUs and GPUs that can process numerous instruction sets simultaneously. Parallel computing takes advantage of this now-standard computer architecture to execute multiple operations at the same time, offering the potential for applications that run faster, are more energy efficient, and can be scaled to tackle problems that demand large computational capabilities. But to get these benefits, you must change the way you design and write software. Taking advantage of the tools, algorithms, and design patterns created specifically for parallel processing is essential to creating top performing applications. about the book Parallel and High Performance Computing is an irreplaceable guide for anyone who needs to maximize application performance and reduce execution time. Parallel computing experts Robert Robey and Yuliana Zamora take a fundamental approach to parallel programming, providing novice practitioners the skills needed to tackle any high-performance computing project with modern CPU and GPU hardware. Get under the hood of parallel computing architecture and learn to evaluate hardware performance, scale up your resources to tackle larger problem sizes, and deliver a level of energy efficiency that makes high performance possible on hand-held devices. When you''re done, you''ll be able to build parallel programs that are reliable, robust, and require minimal code maintenance. This book is unique in its breadth, with discussions of parallel algorithms, techniques to successfully develop parallel programs, and wide coverage of the most effective languages for the CPU and GPU. The programming paradigms include MPI, OpenMP threading, and vectorization for the CPU. For the GPU, the book covers OpenMP and OpenACC directive-based approaches and the native-based CUDA and OpenCL languages. what''s inside Steps for planning a new parallel project Choosing the right data structures and algorithms Addressing underperforming kernels and loops The differences in CPU and GPU architecture about the reader For experienced programmers with proficiency in a high performance computing language such as C, C++, or Fortran. about the authors Robert Robey has been active in the field of parallel computing for over 30 years. He works at Los Alamos National Laboratory, and has previously worked at the University of New Mexico, where he started up the Albuquerque High Performance Computing Center. Yuliana Zamora has lectured on efficient programming of modern hardware at national conferences, based on her work developing applications running on tens of thousands of processing cores and the latest GPU architectures.


Computational Science and Its Applications – ICCSA 2023 Workshops

Computational Science and Its Applications – ICCSA 2023 Workshops

Author: Osvaldo Gervasi

Publisher: Springer Nature

Published: 2023-06-28

Total Pages: 745

ISBN-13: 3031371267

DOWNLOAD EBOOK

This nine-volume set LNCS 14104 – 14112 constitutes the refereed workshop proceedings of the 23rd International Conference on Computational Science and Its Applications, ICCSA 2023, held at Athens, Greece, during July 3–6, 2023. The 350 full papers and 29 short papers and 2 PHD showcase papers included in this volume were carefully reviewed and selected from a total of 876 submissions. These nine-volumes includes the proceedings of the following workshops: Advances in Artificial Intelligence Learning Technologies: Blended Learning, STEM, Computational Thinking and Coding (AAILT 2023); Advanced Processes of Mathematics and Computing Models in Complex Computational Systems (ACMC 2023); Artificial Intelligence supported Medical data examination (AIM 2023); Advanced and Innovative web Apps (AIWA 2023); Assessing Urban Sustainability (ASUS 2023); Advanced Data Science Techniques with applications in Industry and Environmental Sustainability (ATELIERS 2023); Advances in Web Based Learning (AWBL 2023); Blockchain and Distributed Ledgers: Technologies and Applications (BDLTA 2023); Bio and Neuro inspired Computing and Applications (BIONCA 2023); Choices and Actions for Human Scale Cities: Decision Support Systems (CAHSC-DSS 2023); and Computational and Applied Mathematics (CAM 2023).