Application of Fluctuation Solution Theory to Strong Electrolyte Solutions

Application of Fluctuation Solution Theory to Strong Electrolyte Solutions

Author: Heriberto Cabezas

Publisher:

Published: 1985

Total Pages: 386

ISBN-13:

DOWNLOAD EBOOK

Fluctuation solution theory relates derivatives of the thermodynamic properties to spatial integrals of the direct correlation functions. This formalism has been used as the basis for a model of aqueous strong electrolyte solutions which gives both volumetric properties and activities. The main thrust of the work has been the construction of a microscopic model for the direct correlation functions. This model contains the correlations due to the hard core repulsion, long range field interactions, and short range forces. The hard core correlations are modeled with a hard sphere expression derived from the Percus-Yevick theory. The long range field correlations are accounted for by using asymptotic potentials of mean force and the hypernetted chain equation. The short range correlations which include hydration and hydrogen bonding are modeled with a density expansion of the direct correlation function. The model requires six parameters for each ion and two for water. The ionic parameters are valid for all solution and those for water are universal. The model has been used to calculate derivative properties for six 1:1 electrolytes in water at 25c, 1 ATM, the calculated properties have been compared to experimentally determined values in order to confirm the adequacy of the model.


Fluctuation Theory of Solutions

Fluctuation Theory of Solutions

Author: Paul E. Smith

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 383

ISBN-13: 1439899231

DOWNLOAD EBOOK

There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their co


Handbook of Aqueous Electrolyte Thermodynamics

Handbook of Aqueous Electrolyte Thermodynamics

Author: Joseph F. Zemaitis, Jr.

Publisher: John Wiley & Sons

Published: 1986-06-15

Total Pages: 883

ISBN-13: 0816903506

DOWNLOAD EBOOK

Expertise in electrolyte systems has become increasingly important in traditional CPI operations, as well as in oil/gas exploration and production. This book is the source for predicting electrolyte systems behavior, an indispensable "do-it-yourself" guide, with a blueprint for formulating predictive mathematical electrolyte models, recommended tabular values to use in these models, and annotated bibliographies. The final chapter is a general recipe for formulating complete predictive models for electrolytes, along with a series of worked illustrative examples. It can serve as a useful research and application tool for the practicing process engineer, and as a textbook for the chemical engineering student.


Molecular Thermodynamics Of Electrolyte Solutions (Second Edition)

Molecular Thermodynamics Of Electrolyte Solutions (Second Edition)

Author: Lloyd L Lee

Publisher: World Scientific

Published: 2021-01-07

Total Pages: 295

ISBN-13: 9811233012

DOWNLOAD EBOOK

Electrolytes and salt solutions are ubiquitous in chemical industry, biology and nature. This unique compendium introduces the elements of the solution properties of ionic mixtures. In addition, it also serves as a bridge to the modern researches into the molecular aspects of uniform and non-uniform charged systems. Notable subjects include the Debye-Hückel limit, Pitzer's formulation, Setchenov salting-out, and McMillan-Mayer scale. Two new chapters on industrial applications — natural gas treating, and absorption refrigeration, are added to make the book current and relevant.This textbook is eminently suitable for undergraduate and graduate students. For practicing engineers without a background in salt solutions, this introductory volume can also be used as a self-study.


Activity Coefficients in Electrolyte Solutions

Activity Coefficients in Electrolyte Solutions

Author: Kenneth S. Pitzer

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 552

ISBN-13: 1351077929

DOWNLOAD EBOOK

This book was first published in 1991. It considers the concepts and theories relating to mostly aqueous systems of activity coefficients.


Molecular Thermodynamics of Electrolyte Solutions

Molecular Thermodynamics of Electrolyte Solutions

Author: Lloyd L. Lee

Publisher: World Scientific

Published: 2008

Total Pages: 264

ISBN-13: 9812814183

DOWNLOAD EBOOK

The introductory textbook provides an update on electrolyte thermodynamics with a molecular perspective. It is eminently suited as an introduction to the solution thermodynamics of ionic mixtures at the undergraduate and graduate level. It is also invaluable for the understanding and design in the engineering of natural gas treating and adsorption refrigeration with electrolytes.


Electrolytes

Electrolytes

Author: Georgii Georgievich Aseyev

Publisher: CRC Press

Published: 2014-11-24

Total Pages: 368

ISBN-13: 1482249383

DOWNLOAD EBOOK

Electrolyte solutions play a key role in traditional chemical industry processes as well as other sciences such as hydrometallurgy, geochemistry, and crystal chemistry. Knowledge of electrolyte solutions is also key in oil and gas exploration and production, as well as many other environmental engineering endeavors. Until recently, a gap existed between the electrolyte solution theory dedicated to diluted solutions, and the theory, practice, and technology involving concentrated solutions. Electrolytes: Supramolecular Interactions and Non-Equilibrium Phenomena in Concentrated Solutions addresses concentrated electrolyte solutions and the theory of structure formation, super and supramolecular interactions, and other physical processes with these solutions—now feasible due to new precision measurement techniques and experimental data that have become available. The first part of the book covers the electrolyte solution in its stationary state—electrostatic, and various ion-dipole, dipole-dipole, and mutual repulsion interactions. The second part covers the electrolyte solution in its nonstationary status, in the case of forced movement between two plates—electrical conductivity, viscosity, and diffusion. This theoretical framework allows for the determination of activity coefficients of concentrated electrolyte solutions, which play a key role in many aspects of electrochemistry and for developing novel advanced processes in inorganic chemical plants.