A crucial issue for antiviral therapy is the fact that all antiviral substances rapidly select for resistance; thus, monitoring and overcoming resistance has become a most important clinical paradigm of antiviral therapy. This calls for cautious use of antiviral drugs and implementation of combination therapies. In parallel, efforts in drug discovery have to be continued to develop compounds with novel mode-of-action and activity against resistant strains. This book reviews the current status of antiviral therapy, from the roads to development of new compounds to their clinical use and cost effectiveness. Individual chapters address in more detail all available drug classes and outline new approaches currently under development.
By focusing on general molecular mechanisms of antiviral drugs rather than therapies for individual viruses, this ready reference provides the critical knowledge needed to develop entirely novel therapeutics and to target new viruses. It begins with a general discussion of antiviral strategies, followed by a broad survey of known viral targets, such as reverse transcriptases, proteases, neuraminidases, RNA polymerases, helicases and primases, as well as their known inhibitors. The final section contains several cases studies of recent successful antiviral drug development. Edited by Erik de Clercq, the world authority on small molecule antiviral drugs, who has developed more new antivirals than anyone else.
This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.
Discusses how to fight Ebola, SARS Corona, and other known or emerging human viruses by building on the successes in antiviral therapy of the past decades Written by leading medicinal chemists from academia and industry, this book discusses the entire field of antiviral drug discovery and development from a medicinal chemistry perspective, focusing on antiviral drugs, targets, and viral disease mechanisms. It provides an outlook on emerging pathogens such as Ebola, Zika, West Nile, Lassa, and includes a chapter on SARS Coronoavirus-2 causing the present pandemic. New Drug Development for Known and Emerging Viruses describes the discovery and development process for antiviral agents for different classes of viruses and targets based on the experiences from the nine human viruses for which approved drugs are on the market (HIV, HCV, Influenza, RSV, HBV, HPV, HCMV, HSV, and VZV). It covers the properties and potential of 20 classes of currently approved antivirals, including combination drugs, and looks at novel antiviral strategies against emerging viruses. Covers the entire field of antiviral drug discovery and development Addresses the need for antiviral drugs to combat major health threats such as Ebola, Zika, West Nile, and SARS Coronavirus-2 Summarizes the successes of the past 15 years in developing ground-breaking medicines against 9 major human viruses, both from the medicinal chemistry and the pharmacological angle Discusses practical and strategic challenges in the drug discovery and development process, including screening technologies, latency, and toxicity issues New Developments in Antiviral Drugs is an important book for medicinal chemists, pharmaceutical chemists, virologists, and epidemiologists, and will be of great interest to those in the ;pharmaceutical industry and public health agencies.
Applied Plant Virology: Advances, Detection, and Antiviral Strategies provides an overview on recent developments and applications in the field of plant virology. The book begins with an introduction to important advances in plant virology, but then covers topics including techniques for assay detection and the diagnosis of plant viruses, the purification, isolation and characterization of plant viruses, the architecture of plant viruses, the replication of plant viruses, the physiology of virus-infected hosts, vectors of plant viruses, and the nomenclature and classification of plants. The book also discusses defense strategies by utilizing antiviral agents and management strategies of virus and viroid diseases. With contributions from an international collection of experts, this book presents a practical resource for plant virologists, plant pathologists, horticulturalists, agronomists, biotechnologists, academics and researchers interested in up-to-date technologies and information that advance the field of plant virology. - Covers the detection, control and management of plant viruses - Discusses antiviral strategies, along with mechanisms of systemic induced resistance to enhance the defense of plants against viruses - Provides contributory chapters from expert plant virologists from different parts of the world
Virus as Composition, Complexity, Quasispecies, Dynamics, and Biological Implications, Second Edition, explains the fundamental concepts surrounding viruses as complex populations during replication in infected hosts. Fundamental phenomena in virus behavior, such as adaptation to changing environments, capacity to produce disease, and the probability to be transmitted or respond to treatment all depend on virus population numbers. Concepts such as quasispecies dynamics, mutations rates, viral fitness, the effect of bottleneck events, population numbers in virus transmission and disease emergence, and new antiviral strategies are included. The book's main concepts are framed by recent observations on general virus diversity derived from metagenomic studies and current views on the origin and role of viruses in the evolution of the biosphere. - Features current views on key steps in the origin of life and origins of viruses - Includes examples relating ancestral features of viruses with their current adaptive capacity - Explains complex phenomena in an organized and coherent fashion that is easy to comprehend and enjoyable to read - Considers quasispecies as a framework to understand virus adaptability and disease processes
The antiviral therapeutic area continues to rapidly generate meaningful new chemical entities; for example, for HIV alone more than 25 drugs have been approved, and in the next few years many individual drugs and single tablet regimens will be approved for the treatment of hepatitis C virus infection. The increasing success in the antiviral area could be due to targeting drugs at "non-self" genomes and to the patient population that is tolerant of manageable side effects and adaptable to inconvenient dosing. Aimed at medicinal chemists and emerging drug discovery scientists, the book is organized according to the various strategies deployed for the discovery and optimization of initial lead compounds. This book focuses on capturing tactical aspects of problem solving in antiviral drug design, an approach that holds special appeal for those engaged in antiviral drug development, but also appeals to the broader medicinal chemistry community based on its focus on tactical aspects of drug design.
Membrane fusion and targeting processes are tightly regulated and coordinated. Dozens of proteins, originating from both the cytoplasm and membranes are involved. The discovery of homologous proteins from yeast to neurons validates a unified view. Although much is known about the interfering proteins, the events occurring when two lipid bilayers actually fuse are less clear. It should be remembered that lipid bilayers behave like soap-bubbles fusing when meeting each other. In this respect interfering proteins should be considered as preventing undesirable and unnecessary fusion and eventually directing the biological membrane fusion process (when, where, how, and overcoming the activation energy). In this latest volume in the renowned Subcellular Biochemistry series, some aspects of fusion of biological membranes as well as related problems are presented. Although not complete, there is a lot of recent information including on virus-induced membrane fusion. The contributors of the chapters are all among the researchers who performed many of the pioneering studies in the field.
Gene Therapy for Viral Infections provides a comprehensive review of the broader field of nucleic acid and its use in treating viral infections. The text bridges the gap between basic science and important clinical applications of the technology, providing a systematic, integrated review of the advances in nucleic acid-based antiviral drugs and the potential advantages of new technologies over current treatment options. Coverage begins with the fundamentals, exploring varying topics, including harnessing RNAi to silence viral gene expression, antiviral gene editing, viral gene therapy vectors, and non-viral vectors. Subsequent sections include detailed coverage of the developing use of gene therapy for the treatment of specific infections, the principles of rational design of antivirals, and the hurdles that currently face the further advancement of gene therapy technology. - Provides coverage of gene therapy for a variety of infections, including HBV, HCV, HIV, hemorrhagic fever viruses, and respiratory and other viral infections - Bridges the gap between the basic science and the important medical applications of this technology - Features a broad approach to the topic, including an essential overview and the applications of gene therapy, synthetic RNA, and other antiviral strategies that involve nucleic acid engineering - Presents perspectives on the future use of nucleic acids as a novel class of antiviral drugs - Arms the reader with the cutting-edge information needed to stay abreast of this developing field
Viral Pathogenesis: From Basics to Systems Biology, Third Edition, has been thoroughly updated to cover topical advances in the evolving field of viral pathogenesis, while also providing the requisite classic foundational information for which it is recognized. The book provides key coverage of the newfound ability to profile molecular events on a system-wide scale, which has led to a deeper understanding of virus-host interactions, host signaling and molecular-interaction networks, and the role of host genetics in determining disease outcome. In addition, the content has been augmented with short chapters on seminal breakthroughs and profiles of their progenitors, as well as short commentaries on important or controversial issues in the field. Thus, the reader will be given a view of virology research with perspectives on issues such as biomedical ethics, public health policy, and human health. In summary, the third edition will give the student a sense of the exciting new perspectives on viral pathogenesis that have been provided by recent developments in genomics, computation, modeling, and systems biology. - Covers all aspects of viral infection, including viral entry, replication, and release, as well as innate and adaptive immunity and viral pathogenesis - Provides a fresh perspective on the approaches used to understand how viruses cause disease - Features molecular profiling techniques, whole genome sequencing, and innovative computational methods - Highlights the use of contemporary approaches and the insights they provide to the field