Tremendous progress has been made in the last few years in the growth, doping and processing technologies of the wide bandgap semiconductors. As a result, this class of materials now holds significant promis for semiconductor electronics in a broad range of applications. The principal driver for the current revival of interest in III-V Nitrides is their potential use in high power, high temperature, high frequency and optical devices resistant to radiation damage. This book provides a wide number of optoelectronic applications of III-V nitrides and covers the entire process from growth to devices and applications making it essential reading for those working in the semiconductors or microelectronics. Broad review of optoelectronic applications of III-V nitrides
Completely revised and reorganized while retaining the approachable style of the first edition, Infrared Detectors, Second Edition addresses the latest developments in the science and technology of infrared (IR) detection. Antoni Rogalski, an internationally recognized pioneer in the field, covers the comprehensive range of subjects necessary to un
Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the "Willardson and Beer" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry. - Written and edited by internationally renowned experts - Relevant to a wide readership: physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry
Examines both the current and future performance of infrared focal plane arrays that use the various device architectures associated with these two materials technologies. All spectral bands from long wavelength (LWIR) through mid-wavelength (MWIR) to short wavelength (SWIR) are considered, with a view to achieving background and diffraction-limited system performance at room temperature for all wavelengths.
Introduction -- Comparison of Photon and Thermal Detectors Performance -- GaAs/AIGaAs Based Quantum Well Intra-red Photodetector Focal Plane Arrays -- GaInAs(P) Based Qwips on GaAs, InP and Si Substrates for Focal Plane Arrays -- InAs/(Galn)Sb Superlattices: A Promising Material System for Infra-red Detection -- GaSb/InAs Superlattices for Infra-red FPAs -- MCT Properties, Growth Methods and Characterization -- HgCdTe 2D Arrays -- Technology and Performance Limits -- Status of HgCdTe MBE Technology -- Silicon Infra-red Focal Plane Arrays -- PolySiGe Uncooled Microbolometers for Thermal Infra-red Detection -- Infra-red Silicon/Germanium Detectors -- Fundamentals of Spin Filtering in Ferromagnetic Metals with Application to Spin Sensors.
This new edition of Infrared and Terahertz Detectors provides a comprehensive overview of infrared and terahertz detector technology, from fundamental science to materials and fabrication techniques. It contains a complete overhaul of the contents including several new chapters and a new section on terahertz detectors and systems. It includes a new tutorial introduction to technical aspects that are fundamental for basic understanding. The other dedicated sections focus on thermal detectors, photon detectors, and focal plane arrays.
The last two decades have seen a renaissance in interest in the chemistry of the main group elements. In particular research on the metals of group 13 (aluminium, gallium, indium and thallium) has led to the synthesis and isolation of some very novel and unusual molecules, with implications for organometallic synthesis, new materials development, and with biological, medical and, environmental relevance. The Group 13 Metals Aluminium, Gallium, Indium and Thallium aims to cover new facts, developments and applications in the context of more general patterns of physical and chemical behaviour. Particular attention is paid to the main growth areas, including the chemistry of lower formal oxidation states, cluster chemistry, the investigation of solid oxides and hydroxides, advances in the formation of III-V and related compounds, the biological significance of Group 13 metal complexes, and the growing importance of the metals and their compounds in the mediation of organic reactions. Chapters cover: general features of the group 13 elements group 13 metals in the +3 oxidation state: simple inorganic compounds formal oxidation state +3: organometallic chemistry formal oxidation state +2: metal-metal bonded vs. mononuclear derivatives group 13 metals in the +1 oxidation state mixed or intermediate valence group 13 metal compounds aluminium and gallium clusters: metalloid clusters and their relation to the bulk phases, to naked clusters, and to nanoscaled materials simple and mixed metal oxides and hydroxides: solids with extended structures of different dimensionalities and porosities coordination and solution chemistry of the metals: biological, medical and, environmental relevance III-V and related semiconductor materials group 13 metal-mediated organic reactions The Group 13 Metals Aluminium, Gallium, Indium and Thallium provides a detailed, wide-ranging, and up-to-date review of the chemistry of this important group of metals. It will find a place on the bookshelves of practitioners, researchers and students working in inorganic, organometallic, and materials chemistry.
The Department of Defense recently highlighted intelligence, surveillance, and reconnaissance (ISR) capabilities as a top priority for U.S. warfighters. Contributions provided by ISR assets in the operational theaters in Iraq and Afghanistan have been widely documented in press reporting. While the United States continues to increase investments in ISR capabilities, other nations not friendly to the United States will continue to seek countermeasures to U.S. capabilities. The Technology Warning Division of the Defense Intelligence Agency's (DIA) Defense Warning Office (DWO) has the critical responsibility, in collaborations with other components of the intelligence community (IC), for providing U.S. policymakers insight into technological developments that may impact future U.S. warfighting capabilities. To this end, the IC requested that the National Research Council (NRC) investigate and report on key visible and infrared detector technologies, with potential military utility, that are likely to be developed in the next 10-15 years. This study is the eighth in a series sponsored by the DWO and executed under the auspices of the NRC TIGER (Technology Insight-Gauge, Evaluate, and Review) Standing Committee.
"Among the many materials investigated in the infrared (IR) field, narrow-gap semiconductors are the most important in IR photon detector family. Although the first widely used narrow-gap materials were lead salts (during the 1950s, IR detectors were built using single-element-cooled PbS and PbSe photoconductive detectors, primary for anti-missile seekers), this semiconductor family was not well distinguished. This situation seems to have resulted from two reasons: the preparation process of lead salt photoconductive polycrystalline detectors was not well understood and could only be reproduced with well-tried recipes; and the theory of narrow-gap semiconductor bandgap structure was not well known for correct interpretation of the measured transport and photoelectrical properties of these materials"--
The choice of available infrared (IR) detectors for insertion into modern IR systems is both large and confusing. The purpose of this volume is to provide a technical database from which rational IR detector selection criteria evolve, and thus clarify the options open to the modern IR system designer. Emphasis concentrates mainly on high-performance IR systems operating in a tactical environment, although there also is discussion of both strategic environments and low- to medium-performance system requirements.