On the job or in the field, when facing a problem with differential equations and boundary conditions, most likely you don't have time to read through several publications in search of a method that may or may not solve your problem. Organized for quick and easy access to practical solutions, Analytical and Approximate Methods in Transport Pheno
On the job or in the field, when facing a problem with differential equations and boundary conditions, most likely you don't have time to read through several publications in search of a method that may or may not solve your problem. Organized for quick and easy access to practical solutions, Analytical and Approximate Methods in Transport Pheno
This book is unique as the first effort to expound on the subject of systematic scaling analysis. Not written for a specific discipline, the book targets any reader interested in transport phenomena and reaction processes. The book is logically divided into chapters on the use of systematic scaling analysis in fluid dynamics, heat transfer, mass transfer, and reaction processes. An integrating chapter is included that considers more complex problems involving combined transport phenomena. Each chapter includes several problems that are explained in considerable detail. These are followed by several worked examples for which the general outline for the scaling is given. Each chapter also includes many practice problems. This book is based on recognizing the value of systematic scaling analysis as a pedagogical method for teaching transport and reaction processes and as a research tool for developing and solving models and in designing experiments. Thus, the book can serve as both a textbook and a reference book.
Analysis of Transport Phenomena, Second Edition, provides a unified treatment of momentum, heat, and mass transfer, emphasizing the concepts and analytical techniques that apply to these transport processes. The second edition has been revised to reinforce the progression from simple to complex topics and to better introduce the applied mathematics that is needed both to understand classical results and to model novel systems. A common set of formulation, simplification, and solution methods is applied first to heat or mass transfer in stationary media and then to fluid mechanics, convective heat or mass transfer, and systems involving various kinds of coupled fluxes. FEATURES: * Explains classical methods and results, preparing students for engineering practice and more advanced study or research * Covers everything from heat and mass transfer in stationary media to fluid mechanics, free convection, and turbulence * Improved organization, including the establishment of a more integrative approach * Emphasizes concepts and analytical techniques that apply to all transport processes * Mathematical techniques are introduced more gradually to provide students with a better foundation for more complicated topics discussed in later chapters
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.
This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field.
Design, analysis and simulation of tissue constructs is an integral part of the ever-evolving field of biomedical engineering. The study of reaction kinetics, particularly when coupled with complex physical phenomena such as the transport of heat, mass and momentum, is required to determine or predict performance of biologically-based systems wheth
The fourth edition of Transport Phenomena Fundamentals continues with its streamlined approach to the subject, based on a unified treatment of heat, mass, and momentum transport using a balance equation approach. The new edition includes more worked examples within each chapter and adds confidence-building problems at the end of each chapter. Some numerical solutions are included in an appendix for students to check their comprehension of key concepts. Additional resources online include exercises that can be practiced using a wide range of software programs available for simulating engineering problems, such as, COMSOL®, Maple®, Fluent, Aspen, Mathematica, Python and MATLAB®, lecture notes, and past exams. This edition incorporates a wider range of problems to expand the utility of the text beyond chemical engineering. The text is divided into two parts, which can be used for teaching a two-term course. Part I covers the balance equation in the context of diffusive transport—momentum, energy, mass, and charge. Each chapter adds a term to the balance equation, highlighting that term's effects on the physical behavior of the system and the underlying mathematical description. Chapters familiarize students with modeling and developing mathematical expressions based on the analysis of a control volume, the derivation of the governing differential equations, and the solution to those equations with appropriate boundary conditions. Part II builds on the diffusive transport balance equation by introducing convective transport terms, focusing on partial, rather than ordinary, differential equations. The text describes paring down the full, microscopic equations governing the phenomena to simplify the models and develop engineering solutions, and it introduces macroscopic versions of the balance equations for use where the microscopic approach is either too difficult to solve or would yield much more information that is actually required. The text discusses the momentum, Bernoulli, energy, and species continuity equations, including a brief description of how these equations are applied to heat exchangers, continuous contactors, and chemical reactors. The book introduces the three fundamental transport coefficients: the friction factor, the heat transfer coefficient, and the mass transfer coefficient in the context of boundary layer theory. Laminar flow situations are treated first followed by a discussion of turbulence. The final chapter covers the basics of radiative heat transfer, including concepts such as blackbodies, graybodies, radiation shields, and enclosures.
The term 'transport phenomena' describes the fundamental processes of momentum, energy, and mass transfer. This text provides a thorough discussion of transport phenomena, laying the foundation for understanding a wide variety of operations used by chemical engineers. The book is arranged in three parallel parts covering the major topics of momentum, energy, and mass transfer. Each part begins with the theory, followed by illustrations of the way the theory can be used to obtain fairly complete solutions, and concludes with the four most common types of averaging used to obtain approximate solutions. A broad range of technologically important examples, as well as numerous exercises, are provided throughout the text. Based on the author's extensive teaching experience, a suggested lecture outline is also included. This book is intended for first-year graduate engineering students; it will be an equally useful reference for researchers in this field.
Integrated, modern approach to transport phenomena for graduate students, featuring examples and computational solutions to develop practical problem-solving skills.