Pseudodifferential Analysis on Symmetric Cones

Pseudodifferential Analysis on Symmetric Cones

Author: Andre Unterberger

Publisher: CRC Press

Published: 1995-12-13

Total Pages: 228

ISBN-13: 9780849378737

DOWNLOAD EBOOK

Symmetric cones, possibly disguised under non-linear changes of coordinates, are the building blocks of manifolds with edges, corners, or conical points of a very general nature. Besides being a canonical open set of some Euclidean space, a symmetric cone L has an intrinsic Riemannian structure of its own, turning it into a symmetric space. These two structures make it possible to define on L a pseudodifferential analysis (the Fuchs calculus). The considerable interest in pseudodifferential problems on manifolds with non-smooth boundaries makes the precise analyses presented in this book both interesting and important. Much of the material in this book has never been previously published. The methods used throughout the text rely heavily on the use of tools from quantum mechanics, such as representation theory and coherent states. Classes of operators defined by their symbols are given intrinsic characterizations. Harmonic analysis is discussed via the automorphism group of the complex tube over L. The basic definitions governing the Fuchs calculus are provided, and a thorough exposition of the fundamental facts concerning the geometry of symmetric cones is given. The relationship with Jordan algebras is outlined and the general theory is illustrated by numerous examples. The book offers the reader the technical tools for proving the main properties of the Fuchs calculus, with an emphasis on using the non-Euclidean Riemannian structure of the underlying cone. The fundamental results of pseudodifferential analysis are presented. The authors also develop the relationship to complex analysis and group representation. This book benefits researchers interested in analysis on non-smooth domains or anyone working in pseudodifferential analysis. People interested in the geometry or harmonic analysis of symmetric cones will find in this valuable reference a new range of applications of complex analysis on tube-type symmetric domains and of the theory of Jordan algebras.


Analysis on Symmetric Cones

Analysis on Symmetric Cones

Author: Jacques Faraut

Publisher: Oxford University Press on Demand

Published: 1994

Total Pages: 382

ISBN-13: 9780198534778

DOWNLOAD EBOOK

The present book is the first to treat analysis on symmetric cones in a systematic way. It starts by describing, with the simplest available proofs, the Jordan algebra approach to the geometric and algebraic foundations of the theory due to M. Koecher and his school. In subsequent parts itdiscusses harmonic analysis and special functions associated to symmetric cones; it also tries these results together with the study of holomorphic functions on bounded symmetric domains of tube type. It contains a number of new results and new proofs of old results.


Causal Symmetric Spaces

Causal Symmetric Spaces

Author: Gestur Olafsson

Publisher: Academic Press

Published: 1996-09-11

Total Pages: 303

ISBN-13: 0080528724

DOWNLOAD EBOOK

This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces


Riesz Probability Distributions

Riesz Probability Distributions

Author: Abdelhamid Hassairi

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-07-05

Total Pages: 292

ISBN-13: 3110713373

DOWNLOAD EBOOK

This book is a useful overview of results in multivariate probability distributions and multivariate analysis as well as a reference to harmonic analysis on symmetric cones adapted to the needs of researchers in analysis and probability theory.


Interaction Between Functional Analysis, Harmonic Analysis, and Probability

Interaction Between Functional Analysis, Harmonic Analysis, and Probability

Author: Nigel Kalton

Publisher: CRC Press

Published: 1995-10-12

Total Pages: 496

ISBN-13: 9780824796112

DOWNLOAD EBOOK

Based on a conference on the interaction between functional analysis, harmonic analysis and probability theory, this work offers discussions of each distinct field, and integrates points common to each. It examines developments in Fourier analysis, interpolation theory, Banach space theory, probability, probability in Banach spaces, and more.


Variational Analysis

Variational Analysis

Author: R. Tyrrell Rockafellar

Publisher: Springer Science & Business Media

Published: 2009-06-26

Total Pages: 747

ISBN-13: 3642024319

DOWNLOAD EBOOK

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.


Analysis and Geometry on Complex Homogeneous Domains

Analysis and Geometry on Complex Homogeneous Domains

Author: Jacques Faraut

Publisher: Springer Science & Business Media

Published: 1999-12-10

Total Pages: 568

ISBN-13: 9780817641382

DOWNLOAD EBOOK

A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.


The Geometry of Jordan and Lie Structures

The Geometry of Jordan and Lie Structures

Author: Wolfgang Bertram

Publisher: Springer

Published: 2003-07-01

Total Pages: 285

ISBN-13: 3540444580

DOWNLOAD EBOOK

The geometry of Jordan and Lie structures tries to answer the following question: what is the integrated, or geometric, version of real Jordan algebras, - triple systems and - pairs? Lie theory shows the way one has to go: Lie groups and symmetric spaces are the geometric version of Lie algebras and Lie triple systems. It turns out that both geometries are closely related via a functor between them, called the Jordan-Lie functor, which is constructed in this book. The reader is not assumed to have any knowledge of Jordan theory; the text can serve as a self-contained introduction to (real finite-dimensional) Jordan theory.


Wavelets, Frames and Operator Theory

Wavelets, Frames and Operator Theory

Author: Palle E. T. Jørgensen

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 358

ISBN-13: 0821833804

DOWNLOAD EBOOK

Nineteen papers are presented from a special joint session held in conjunction with the American Mathematical Society's 2003 annual meeting in Baltimore, and a National Science Foundation workshop at the University of Maryland. The papers distinguish themselves by often including applications as wel


The Feynman Integral and Feynman's Operational Calculus

The Feynman Integral and Feynman's Operational Calculus

Author: Gerald W. Johnson

Publisher: Clarendon Press

Published: 2000-03-16

Total Pages: 790

ISBN-13: 0191546267

DOWNLOAD EBOOK

This book provides the most comprehensive mathematical treatment to date of the Feynman path integral and Feynman's operational calculus. It is accessible to mathematicians, mathematical physicists and theoretical physicists. Including new results and much material previously only available in the research literature, this book discusses both the mathematics and physics background that motivate the study of the Feynman path integral and Feynman's operational calculus, and also provides more detailed proofs of the central results.