As an introductory textbook on the analysis of variance or a reference for the researcher, this text stresses applications rather than theory, but gives enough theory to enable the reader to apply the methods intelligently rather than mechanically. Comprehensive, and covering the important techniques in the field, including new methods of post hoc testing. The relationships between different research designs are emphasized, and these relationships are exploited to develop general principles which are generalized to the analyses of a large number of seemingly differentdesigns. Primarily for graduate students in any field where statistics are used.
Having trouble finding a book that shows you not only how to analyze data but also how to collect the data appropriately and fully interpret the analysis, too? Here′s a new book that does all this in a particularly readable fashion. Turner and Thayer′s text: Shows how to design an experiment in the best possible way to investigate the topic of interest Explains which associated analysis will best answer your research question Demonstrates how to conduct the analysis and then fully interpret the results in the context of your research question Organized so that the reader moves from the simplest type of design to more complex ones, the authors introduce five different kinds of ANOVA techniques and explain which design/analysis is appropriate to answer specific questions. They show how to perform each analysis using only a calculator to provide the reader with a better "feel" for the analyses than simply seeing the mathematical answers on a computer print-out. The book concludes with tips for tests on ANOVA, and descriptions of how to use the knowledge gained from the text to determine the credibility of claims made and "statistics" presented in various types of reports.
Why is this Book a Useful Supplement for Your Statistics Course? Most core statistics texts cover subjects like analysis of variance and regression, but not in much detail. This book, as part of our Series in Research Methods and Statistics, provides you with the flexibility to cover ANOVA more thoroughly, but without financially overburdening your students.
This text presents a comprehensive treatment of basic statistical methods and their applications. It focuses on the analysis of variance and regression, but also addressing basic ideas in experimental design and count data. The book has four connecting themes: similarity of inferential procedures, balanced one-way analysis of variance, comparison of models, and checking assumptions. Most inferential procedures are based on identifying a scalar parameter of interest, estimating that parameter, obtaining the standard error of the estimate, and identifying the appropriate reference distribution. Given these items, the inferential procedures are identical for various parameters. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of comparing the sample variance of the group means with the mean of the sample variance for each group. All balanced analysis of variance problems are considered in terms of computing sample variances for various group means. Comparing different models provides a structure for examining both balanced and unbalanced analysis of variance problems and regression problems. Checking assumptions is presented as a crucial part of every statistical analysis. Examples using real data from a wide variety of fields are used to motivate theory. Christensen consistently examines residual plots and presents alternative analyses using different transformation and case deletions. Detailed examination of interactions, three factor analysis of variance, and a split-plot design with four factors are included. The numerous exercises emphasize analysis of real data. Senior undergraduate and graduate students in statistics and graduate students in other disciplines using analysis of variance, design of experiments, or regression analysis will find this book useful.
NEW: updated eResources, 'Case Studies for Teaching on Race, Racism and Black Lives Matter.' Please see Support Material tab to download the new resources. This book presents an integrated approach to learning about research design alongside statistical analysis concepts. Strunk and Mwavita maintain a focus on applied educational research throughout the text, with practical tips and advice on how to do high-quality quantitative research. Design and Analysis in Educational Research teaches research design (including epistemology, research ethics, forming research questions, quantitative design, sampling methodologies, and design assumptions) and introductory statistical concepts (including descriptive statistics, probability theory, sampling distributions), basic statistical tests (like z and t), and ANOVA designs, including more advanced designs like the factorial ANOVA and mixed ANOVA, using SPSS for analysis. Designed specifically for an introductory graduate course in research design and statistical analysis, the book takes students through principles by presenting case studies, describing the research design principles at play in each study, and then asking students to walk through the process of analyzing data that reproduce the published results. An online eResource is also available with data sets. This textbook is tailor-made for first-level doctoral courses in research design and analysis, and will also be of interest to graduate students in education and educational research.
Data Analysis for Research Designs covers the analytical techniques for the analysis of variance (ANOVA) and multiple regression/correlation (MRC), emphasizing single-degree-of-freedom comparisons so that students focus on clear research planning. This text is designed for advanced undergraduates and graduate students of the behavioral and social sciences who have an understanding of algebra and statistics.
The authors have improved on their widely used first edition by providing updated examples, adding material on how to do ANOVA using statistical packages for microcomputers, linking the use of ANOVA to regression analysis, and enchancing their discussion on using ANOVA for experimentally gathered data.
In the investigation of human behaviour, statistical techniques are employed widely in the social sciences. Whilst introductory statistics courses cover essential techniques, the complexities of behaviour demand that more flexible and comprehensive methods are also employed. Analysis of Variance (ANOVA) has become one of the most common of these and it is therefore essential for both student and researcher to have a thorough understanding of it. A Student's Guide to Analysis of Variance covers a range of statistical techniques associated with ANOVA, including single and multiple factor designs, various follow-up procedures such as post-hoc tests, and how to make sense of interactions. Suggestions on the best use of techniques and advice on how to avoid the pitfalls are included, along with guidelines on the writing of formal reports. Introductory level topics such as standard deviation, standard error and t-tests are revised, making this book an invaluable aid to all students for whom ANOVA is a compulsory topic. It will also serve as a useful refresher for the more advanced student and practising researcher.