Analysis of Fracture Toughness Mechanism in Ultra-fine-grained Steels

Analysis of Fracture Toughness Mechanism in Ultra-fine-grained Steels

Author: Toshihiro Hanamura

Publisher: Springer

Published: 2014-09-04

Total Pages: 71

ISBN-13: 4431544992

DOWNLOAD EBOOK

In this book, advanced steel technologies mainly developed at the National Institute for Materials Science (NIMS), Japan, for structure control, mechanical properties, and the related mechanisms are introduced and discussed. NIMS has long worked on developing advanced steel techniques, namely, producing advanced steels by using only simple alloying elements such as carbon, manganese, and silicon, and also by utilizing steel scrap. The hope is that this approach will lead to a technology of a so-called steel-to-steel recycling process, with the ultimate goal of a recycling process such as an automotive-steel-to-automotive-steel recycling process to take the place of the current cascade-type recycling system. The main idea is to utilize ultra-grain refining structures and hetero structures as well as martensite structures. In particular, the focus of this book is on tensile strength and toughness of advanced steels from both the fundamental and engineering points of view. Fundamentally, a unique approach to analysis is taken, based on fracture surface energy as effective grain size is employed to better understand the mechanism of property improvement. From the engineering point of view, in fracture toughness such factors as crack tip opening displacement (CTOD) of advanced steels are evaluated in comparison with those of conventional steels.


Ultra-Fine Grained Steels

Ultra-Fine Grained Steels

Author: Yuqing Weng

Publisher: Springer Science & Business Media

Published: 2009-04-08

Total Pages: 588

ISBN-13: 3540772308

DOWNLOAD EBOOK

This book discusses results of the New Generation Iron and Steel Materials research project funded over the last ten years. It thoroughly describes theoretical achievements in ultra-fine grain steel and its refinement. It also discusses progress in related areas of engineering and technology. The author has been engaged in the research of new generation structural materials for the last twelve years being Chief Scientist of three national research programs in China.


Fracture Mechanics

Fracture Mechanics

Author: Lucas Alves

Publisher: BoD – Books on Demand

Published: 2016-10-19

Total Pages: 334

ISBN-13: 953512708X

DOWNLOAD EBOOK

This book is a collection of 13 chapters divided into seven sections: Section I: "General Foundations of the Stress Field and Toughness" with one chapter, Section II: "Fractography and Impact Analysis" with two chapters, Section III: "Toughness Fracture" with three chapters, Section IV: "Fracture Behavior" with two chapters, Section V: "Natural and Hydraulic Fractures" with two chapters, section VI: "Fatigue" with one chapter and Section VII: "Fracture Biomaterials and compatible" with two chapters. This book covers a wide range of application of fracture mechanics in materials science, engineering, rock prospecting, dentistry and medicine. The book is aimed towards materials scientists, metallurgists, mechanical and civil engineers, doctors and dentists and can also be well used in education, research and industry.


Advanced High Strength Sheet Steels

Advanced High Strength Sheet Steels

Author: Nina Fonstein

Publisher: Springer

Published: 2015-11-01

Total Pages: 415

ISBN-13: 3319191659

DOWNLOAD EBOOK

The book covers all types of advanced high strength steels ranging from dual-phase, TRIP. Complex phase, martensitic, TWIP steels to third generation steels, including promising candidates as carbide free bainitic steels, med Mn and Quenching & Partitioning processed steels. The author presents fundamentals of physical metallurgy of key features of structure and relationship of structure constituents with mechanical properties as well as basics of processing AHSS starting from most important features of intercritical heat treatment, with focus on critical phase transformations and influence of alloying and microalloying. This book intends to summarize the existing knowledge to show how it can be utilized for optimization and adaption of steel composition, processing, and for additional improvement of steel properties that should be recommended to engineering personal of steel designers, producers and end users of AHSS as well as to students of colleges and Universities who deal with materials for auto industry.


Toughening Mechanisms in Composite Materials

Toughening Mechanisms in Composite Materials

Author: Qing-Hua Qin

Publisher: Elsevier

Published: 2015-05-26

Total Pages: 417

ISBN-13: 1782422919

DOWNLOAD EBOOK

Toughening Mechanisms in Composite Materials aims to provide a comprehensive and technically detailed coverage of composites and their toughening mechanisms. Unique in its direct and comprehensive approach, the book presents fundamental knowledge on composites' toughening mechanisms as well as a comprehensive treatment of numerical methods. This volume summarizes the current state-of-the-art and presents the most recent research outcomes in the field. It details the development of each of the techniques, beginning with basic principles, and new concepts are illustrated with examples wherever possible. - Covers particle-reinforced composites, fibre-reinforced composites and other toughening mechanisms - Analyses toughening mechanisms in a broad range of composite materials - Developments in nanotube toughened composites and toughened graphene ceramic composites are examined


Mechanical Behavior and Fracture of Engineering Materials

Mechanical Behavior and Fracture of Engineering Materials

Author: Jorge Luis González-Velázquez

Publisher: Springer Nature

Published: 2019-08-29

Total Pages: 253

ISBN-13: 303029241X

DOWNLOAD EBOOK

This book presents the theoretical concepts of stress and strain, as well as the strengthening and fracture mechanisms of engineering materials in an accessible level for non-expert readers, but without losing scientific rigor. This volume fills the gap between the specialized books on mechanical behavior, physical metallurgy and material science and engineering books on strength of materials, structural design and materials failure. Therefore it is intended for college students and practicing engineers that are learning for the first time the mechanical behavior and failure of engineering materials or wish to deepen their understanding on these topics. The book includes specific topics seldom covered in other books, such as: how to determine a state of stress, the relation between stress definition and mechanical design, or the theory behind the methods included in industrial standards to assess defects or to determine fatigue life. The emphasis is put into the link between scientific knowledge and practical applications, including solved problems of the main topics, such as stress and strain calculation. Mohr's Circle, yield criteria, fracture mechanics, fatigue and creep life prediction. The volume covers both the original findings in the field of mechanical behavior of engineering materials, and the most recent and widely accepted theories and techniques applied to this topic. At the beginning of some selected topics that by the author's judgement are transcendental for this field of study, the prime references are given, as well as a brief biographical semblance of those who were the pioneers or original contributors. Finally, the intention of this book is to be a textbook for undergraduate and graduate courses on Mechanical Behavior, Mechanical Metallurgy and Materials Science, as well as a consulting and/or training material for practicing engineers in industry that deal with mechanical design, materials selection, material processing, structural integrity assessment, and for researchers that incursion for the first time in the topics covered in this book.


Fatigue and Fracture

Fatigue and Fracture

Author: F. C. Campbell

Publisher: ASM International

Published: 2012-01-01

Total Pages: 699

ISBN-13: 1615039767

DOWNLOAD EBOOK

"This book emphasizes the physical and practical aspects of fatigue and fracture. It covers mechanical properties of materials, differences between ductile and brittle fractures, fracture mechanics, the basics of fatigue, structural joints, high temperature failures, wear, environmentally-induced failures, and steps in the failure analysis process."--publishers website.