Living on an Active Earth

Living on an Active Earth

Author: National Research Council

Publisher: National Academies Press

Published: 2003-09-22

Total Pages: 431

ISBN-13: 0309065623

DOWNLOAD EBOOK

The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.


Understanding Faults

Understanding Faults

Author: David Tanner

Publisher: Elsevier

Published: 2019-10-08

Total Pages: 382

ISBN-13: 0128159863

DOWNLOAD EBOOK

Understanding Faults: Detecting, Dating, and Modeling offers a single resource for analyzing faults for a variety of applications, from hazard detection and earthquake processes, to geophysical exploration. The book presents the latest research, including fault dating using new mineral growth, fault reactivation, and fault modeling, and also helps bridge the gap between geologists and geophysicists working across fault-related disciplines. Using diagrams, formulae, and worldwide case studies to illustrate concepts, the book provides geoscientists and industry experts in oil and gas with a valuable reference for detecting, modeling, analyzing and dating faults. - Presents cutting-edge information relating to fault analysis, including mechanical, geometrical and numerical models, theory and methodologies - Includes calculations of fault sealing capabilities - Describes how faults are detected, what fault models predict, and techniques for dating fault movement - Utilizes worldwide case studies throughout the book to concretely illustrate key concepts


The Mechanics of Earthquakes and Faulting

The Mechanics of Earthquakes and Faulting

Author: Christopher H. Scholz

Publisher: Cambridge University Press

Published: 2002-05-02

Total Pages: 508

ISBN-13: 9780521655408

DOWNLOAD EBOOK

Our understanding of earthquakes and faulting processes has developed significantly since publication of the successful first edition of this book in 1990. This revised edition, first published in 2002, was therefore thoroughly up-dated whilst maintaining and developing the two major themes of the first edition. The first of these themes is the connection between fault and earthquake mechanics, including fault scaling laws, the nature of fault populations, and how these result from the processes of fault growth and interaction. The second major theme is the central role of the rate-state friction laws in earthquake mechanics, which provide a unifying framework within which a wide range of faulting phenomena can be interpreted. With the inclusion of two chapters explaining brittle fracture and rock friction from first principles, this book is written at a level which will appeal to graduate students and research scientists in the fields of seismology, physics, geology, geodesy and rock mechanics.


Rock Fractures in Geological Processes

Rock Fractures in Geological Processes

Author: Agust Gudmundsson

Publisher: Cambridge University Press

Published: 2011-04-28

Total Pages: 593

ISBN-13: 1139500694

DOWNLOAD EBOOK

Rock fractures control many of Earth's dynamic processes, including plate-boundary development, tectonic earthquakes, volcanic eruptions, and fluid transport in the crust. An understanding of rock fractures is also essential for effective exploitation of natural resources such as ground water, geothermal water, and petroleum. This book combines results from fracture mechanics, materials science, rock mechanics, structural geology, hydrogeology, and fluid mechanics to explore and explain fracture processes and fluid transport in the crust. Basic concepts are developed from first principles and illustrated with worked examples linking models of geological processes to real field observations and measurements. Many additional examples and exercises are provided online, allowing readers to practise formulating and quantitative testing of models. Rock Fractures in Geological Processes is designed for courses at the advanced undergraduate and graduate level but also forms a vital resource for researchers and industry professionals concerned with fractures and fluid transport in the Earth's crust.


Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II

Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II

Author: Mitsuhiro Matsu'ura

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 360

ISBN-13: 3034881975

DOWNLOAD EBOOK

In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.


Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I

Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I

Author: Mitsuhiro Matsu'ura

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 389

ISBN-13: 3034882033

DOWNLOAD EBOOK

In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics covered in Part I range from the microscopic simulation and laboratory studies of rock fracture and the underlying mechanism for nucleation and catastrophic failure to the development of theoretical models of frictional behaviors of faults; as well as the simulation studies of dynamic rupture processes and seismic wave propagation in a 3-D heterogeneous medium, to the case studies of strong ground motions from the 1999 Chi-Chi earthquake and seismic hazard estimation for Cascadian subduction zone earthquakes.


Pre-Earthquake Processes

Pre-Earthquake Processes

Author: Dimitar Ouzounov

Publisher: John Wiley & Sons

Published: 2018-05-30

Total Pages: 384

ISBN-13: 1119156955

DOWNLOAD EBOOK

Pre-Earthquake signals are advanced warnings of a larger seismic event. A better understanding of these processes can help to predict the characteristics of the subsequent mainshock. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies presents the latest research on earthquake forecasting and prediction based on observations and physical modeling in China, Greece, Italy, France, Japan, Russia, Taiwan, and the United States. Volume highlights include: Describes the earthquake processes and the observed physical signals that precede them Explores the relationship between pre-earthquake activity and the characteristics of subsequent seismic events Encompasses physical, atmospheric, geochemical, and historical characteristics of pre-earthquakes Illustrates thermal infrared, seismo–ionospheric, and other satellite and ground-based pre-earthquake anomalies Applies these multidisciplinary data to earthquake forecasting and prediction Written for seismologists, geophysicists, geochemists, physical scientists, students and others, Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies offers an essential resource for understanding the dynamics of pre-earthquake phenomena from an international and multidisciplinary perspective.


Glacially-Triggered Faulting

Glacially-Triggered Faulting

Author: Holger Steffen

Publisher: Cambridge University Press

Published: 2021-12-16

Total Pages: 461

ISBN-13: 1108490026

DOWNLOAD EBOOK

Glacially triggered faulting describes movement of pre-existing faults caused by a combination of tectonic and glacially induced isostatic stresses. The most impressive fault-scarps are found in northern Europe, assumed to be reactivated at the end of the deglaciation. This view has been challenged as new faults have been discovered globally with advanced techniques such as LiDAR, and fault activity dating has shown several phases of reactivation thousands of years after deglaciation ended. This book summarizes the current state-of-the-art research in glacially triggered faulting, discussing the theoretical aspects that explain the presence of glacially induced structures and reviews the geological, geophysical, geodetic and geomorphological investigation methods. Written by a team of international experts, it provides the first global overview of confirmed and proposed glacially induced faults, and provides an outline for modelling these stresses and features. It is a go-to reference for geoscientists and engineers interested in ice sheet-solid Earth interaction.


The Complex Faulting Process of Earthquakes

The Complex Faulting Process of Earthquakes

Author: J. Koyama

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 207

ISBN-13: 9401732612

DOWNLOAD EBOOK

In seismology an earthquake source is described in terms of a fault with a particular rupture size. The faulting process of large earthquakes has been investigated in the last two decades through analyses of long-period seismo grams produced by advanced digital seismometry. By long-period far-field approximation, the earthquake source has been represented by physical parameters such as s~ismic moment, fault dimension and earthquake mag nitude. Meanwhile, destruction often results from strong ground motion due to large earthquakes at short distances. Since periods of strong ground motion are far shorter than those of seismic waves at teleseismic distances, the theory of long-period source process of earthquakes cannot be applied directly to strong ground motion at short distances. The excitation and propagation of high-frequency seismic waves are of special interest in recent earthquake seismology. In particular, the descrip tion and simulation of strong ground motion are very important not only for problems directly relevant to earthquake engineering, but also to the frac ture mechanics of earthquake faulting. Understanding of earthquake sources has been developed by investigating the complexity of faulting processes for the case of large earthquakes. Laboratory results on rock failures have also advanced the understanding of faulting mechanisms. Various attempts have been made to simulate, theoretically and empirically, the propagation of short-period seismic waves in the heterogeneous real earth.