Improved Seismic Monitoring - Improved Decision-Making

Improved Seismic Monitoring - Improved Decision-Making

Author: National Research Council

Publisher: National Academies Press

Published: 2006-01-04

Total Pages: 196

ISBN-13: 0309165032

DOWNLOAD EBOOK

Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.


Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering

Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering

Author: National Research Council (U.S.). Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES)

Publisher: National Academy Press

Published: 2003-11-21

Total Pages: 200

ISBN-13:

DOWNLOAD EBOOK

The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.


Advances in Assessment and Modeling of Earthquake Loss

Advances in Assessment and Modeling of Earthquake Loss

Author: Sinan Akkar

Publisher: Springer Nature

Published: 2021-06-02

Total Pages: 315

ISBN-13: 3030688135

DOWNLOAD EBOOK

This open access book originates from an international workshop organized by Turkish Natural Catastrophe Insurance Pool (TCIP) in November 2019 that gathered renown researchers from academia, representatives of leading international reinsurance and modeling companies as well as government agencies responsible of insurance pricing in Turkey. The book includes chapters related to post-earthquake damage assessment, the state-of-art and novel earthquake loss modeling, their implementation and implication in insurance pricing at national, regional and global levels, and the role of earthquake insurance in building resilient societies and fire following earthquakes. The rich context encompassed in the book makes it a valuable tool not only for professionals and researchers dealing with earthquake loss modeling but also for practitioners in the insurance and reinsurance industry.


Seismic Structural Health Monitoring

Seismic Structural Health Monitoring

Author: Maria Pina Limongelli

Publisher: Springer

Published: 2019-04-24

Total Pages: 446

ISBN-13: 303013976X

DOWNLOAD EBOOK

This book includes a collection of state-of-the-art contributions addressing both theoretical developments in, and successful applications of, seismic structural health monitoring (S2HM). Over the past few decades, Seismic SHM has expanded considerably, due to the growing demand among various stakeholders (owners, managers and engineering professionals) and researchers. The discipline has matured in the process, as can be seen by the number of S2HM systems currently installed worldwide. Furthermore, the responses recorded by S2HM systems hold great potential, both with regard to the management of emergency situations and to ordinary maintenance needs. The book’s 17 chapters, prepared by leading international experts, are divided into four major sections. The first comprises six chapters describing the specific requirements of S2HM systems for different types of civil structures and infrastructures (buildings, bridges, cultural heritage, dams, structures with base isolation devices) and for monitoring different phenomena (e.g. soil-structure interaction and excessive drift). The second section describes available methods and computational tools for data processing, while the third is dedicated to hardware and software tools for S2HM. In the book’s closing section, five chapters report on state-of-the-art applications of S2HM around the world.


National Earthquake Resilience

National Earthquake Resilience

Author: National Research Council

Publisher: National Academies Press

Published: 2011-09-09

Total Pages: 197

ISBN-13: 0309186773

DOWNLOAD EBOOK

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.