Analysis and Geometry on Graphs and Manifolds

Analysis and Geometry on Graphs and Manifolds

Author: Matthias Keller

Publisher: Cambridge University Press

Published: 2020-08-20

Total Pages: 493

ISBN-13: 1108587380

DOWNLOAD EBOOK

This book addresses the interplay between several rapidly expanding areas of mathematics. Suitable for graduate students as well as researchers, it provides surveys of topics linking geometry, spectral theory and stochastics.


Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Author: Alexander Grigor'yan

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-01-18

Total Pages: 337

ISBN-13: 3110700859

DOWNLOAD EBOOK

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.


Geometry and Analysis on Manifolds

Geometry and Analysis on Manifolds

Author: Takushiro Ochiai

Publisher:

Published: 2015

Total Pages:

ISBN-13: 9783319115245

DOWNLOAD EBOOK

This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi's career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.


Perspectives in Analysis, Geometry, and Topology

Perspectives in Analysis, Geometry, and Topology

Author: Ilia Itenberg

Publisher: Springer Science & Business Media

Published: 2011-12-14

Total Pages: 483

ISBN-13: 0817682775

DOWNLOAD EBOOK

The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.


Information Geometry and Its Applications

Information Geometry and Its Applications

Author: Shun-ichi Amari

Publisher: Springer

Published: 2016-02-02

Total Pages: 378

ISBN-13: 4431559787

DOWNLOAD EBOOK

This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.


The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold

Author: Steven Rosenberg

Publisher: Cambridge University Press

Published: 1997-01-09

Total Pages: 190

ISBN-13: 9780521468312

DOWNLOAD EBOOK

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.


Lectures on Symplectic Geometry

Lectures on Symplectic Geometry

Author: Ana Cannas da Silva

Publisher: Springer

Published: 2004-10-27

Total Pages: 240

ISBN-13: 354045330X

DOWNLOAD EBOOK

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.


Spectral Analysis on Graph-like Spaces

Spectral Analysis on Graph-like Spaces

Author: Olaf Post

Publisher: Springer Science & Business Media

Published: 2012-01-06

Total Pages: 444

ISBN-13: 3642238394

DOWNLOAD EBOOK

Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis. In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances. Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as norm convergence of operators acting in different Hilbert spaces, an extension of the concept of boundary triples to partial differential operators, and an abstract definition of resonances via boundary triples. These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed.


Introduction to Analysis on Graphs

Introduction to Analysis on Graphs

Author: Alexander Grigor’yan

Publisher: American Mathematical Soc.

Published: 2018-08-23

Total Pages: 160

ISBN-13: 147044397X

DOWNLOAD EBOOK

A central object of this book is the discrete Laplace operator on finite and infinite graphs. The eigenvalues of the discrete Laplace operator have long been used in graph theory as a convenient tool for understanding the structure of complex graphs. They can also be used in order to estimate the rate of convergence to equilibrium of a random walk (Markov chain) on finite graphs. For infinite graphs, a study of the heat kernel allows to solve the type problem—a problem of deciding whether the random walk is recurrent or transient. This book starts with elementary properties of the eigenvalues on finite graphs, continues with their estimates and applications, and concludes with heat kernel estimates on infinite graphs and their application to the type problem. The book is suitable for beginners in the subject and accessible to undergraduate and graduate students with a background in linear algebra I and analysis I. It is based on a lecture course taught by the author and includes a wide variety of exercises. The book will help the reader to reach a level of understanding sufficient to start pursuing research in this exciting area.