In today's world, reasonably predictable military operations have been replaced by low intensity conflicts-less predictable terrorist activities carried out by determined individuals or small groups that possess a wide range of backgrounds and capabilities. Because of the threats posed by this evolving type of warfare, civil engineers and emergency
'Analysis and Design of Marine Structures' explores recent developments in methods and modelling procedures for structural assessment of marine structures: - Methods and tools for establishing loads and load effects; - Methods and tools for strength assessment; - Materials and fabrication of structures; - Methods and tools for structural design and optimisation; - Structural reliability, safety and environment protection. The book is a valuable reference source for academics, engineers and professionals involved in marine structures and design of ship and offshore structures.
Standard ASCE/SEI 59-22 provides minimum requirements for planning, design, construction, and assessment of new and existing buildings subject to the effects of accidental or malicious explosions.
Unique single reference supports functional and cost-efficient designs of blast resistant buildings Now there's a single reference to which architects, designers, and engineers can turn for guidance on all the key elements of the design of blast resistant buildings that satisfy the new ASCE Standard for Blast Protection of Buildings as well as other ASCE, ACI, and AISC codes. The Handbook for Blast Resistant Design of Buildings features contributions from some of the most knowledgeable and experienced consultants and researchers in blast resistant design. This handbook is organized into four parts: Part 1, Design Considerations, sets forth basic principles, examining general considerations in the design process; risk analysis and reduction; criteria for acceptable performance; materials performance under the extraordinary blast environment; and performance verification for technologies and solution methodologies. Part 2, Blast Phenomena and Loading, describes the explosion environment, loading functions needed for blast response analysis, and fragmentation and associated methods for effects analysis. Part 3, System Analysis and Design, explains the analysis and design considerations for structural, building envelope, component space, site perimeter, and building system designs. Part 4, Blast Resistant Detailing, addresses the use of concrete, steel, and masonry in new designs as well as retrofitting existing structures. As the demand for blast resistant buildings continues to grow, readers can turn to the Handbook for Blast Resistant Design of Buildings, a unique single source of information, to support competent, functional, and cost-efficient designs.
An authoritative single-volume reference on the design and analysis of ESD protection for ICs Electrostatic discharge (ESD) is a major reliability challenge to semiconductors, integrated circuits (ICs), and microelectronic systems. On-chip ESD protection is a vital to any electronic products, such as smartphones, laptops, tablets, and other electronic devices. Practical ESD Protection Design provides comprehensive and systematic guidance on all major aspects of designs of on-chip ESD protection for integrated circuits (ICs). Written for students and practicing engineers alike, this one-stop resource covers essential theories, hands-on design skills, computer-aided design (CAD) methods, characterization and analysis techniques, and more on ESD protection designs. Detailed chapters examine an array of topics ranging from fundamental to advanced, including ESD phenomena, ESD failure analysis, ESD testing models, ESD protection devices and circuits, ESD design layout and technology effects, ESD design flows and co-design methods, ESD modelling and CAD techniques, and future ESD protection concepts. Based on the author’s decades of design, research and teaching experiences, Practical ESD Protection Design: • Features numerous real-world ESD protection design examples • Emphasizes on ESD protection design techniques and procedures • Describes ESD-IC co-design methodology for high-performance mixed-signal ICs and broadband radio-frequency (RF) ICs • Discusses CAD-based ESD protection design optimization and prediction using both Technology and Electrical Computer-Aided Design (TCAD/ECAD) simulation • Addresses new ESD CAD algorithms and tools for full-chip ESD physical design verification • Explores the disruptive future outlook of ESD protection Practical ESD Protection Design is a valuable reference for industrial engineers and academic researchers in the field, and an excellent textbook for electronic engineering courses in semiconductor microelectronics and integrated circuit designs.
The International Association of Protective Structures (IAPS) was launched on 1 October 2010 in Manchester, UK during the first International Conference of Protective Structures. The primary purpose of IAPS is to bring researchers and engineers working in the area of protective structures together, and to promote research and development work for better life and structure protection against shock and impact loads. More information can be found at http://www.protectivestructures.org/contact.html. Advances in Protective Structures Research is the first publication in a series of planned publications by IAPS. It contains 13 chapters prepared by active and prominent researchers around the world in the area of protective structures. It covers the dynamic material model and material properties, structural response analysis, structural reliability analysis, impact loads and ground shock. The contents of the book reflect well the current research achievements and practice in structural protection against blast and impact loads. They represent the advanced international research status in theoretical derivations, numerical simulations, and laboratory and field tests for structure protections.
This book reviews the development of research into the explosive loading of structures, mainly since the beginning of the twentieth century. Major contributions in the fields of measurement, analysis and prediction are discussed. Dynamic loading from conventional high explosives is examined, as well as the effects of liquid propellant, dust, gas, v
Life-Cycle Civil Engineering: Innovation, Theory and Practice contains the lectures and papers presented at IALCCE2020, the Seventh International Symposium on Life-Cycle Civil Engineering, held in Shanghai, China, October 27-30, 2020. It consists of a book of extended abstracts and a multimedia device containing the full papers of 230 contributions, including the Fazlur R. Khan lecture, eight keynote lectures, and 221 technical papers from all over the world. All major aspects of life-cycle engineering are addressed, with special emphasis on life-cycle design, assessment, maintenance and management of structures and infrastructure systems under various deterioration mechanisms due to various environmental hazards. It is expected that the proceedings of IALCCE2020 will serve as a valuable reference to anyone interested in life-cycle of civil infrastructure systems, including students, researchers, engineers and practitioners from all areas of engineering and industry.