Analysis and Design of Low-Voltage Power Systems

Analysis and Design of Low-Voltage Power Systems

Author: Ismail Kasikci

Publisher: John Wiley & Sons

Published: 2006-12-13

Total Pages: 399

ISBN-13: 3527606467

DOWNLOAD EBOOK

You are responsible for planning and designing electrical power systems? Good. Hopefully you know your way through national and international regulations, safety standards, and all the possible pitfalls you will encounter. You're not sure? This volume provides you with the wealth of experience the author gained in 20 years of practice. The enclosed CAD software accelerates your planning process and makes your final design cost-efficient and secure.


Analysis and Design of Electrical Power Systems

Analysis and Design of Electrical Power Systems

Author: Ismail Kasikci

Publisher: John Wiley & Sons

Published: 2022-05-09

Total Pages: 532

ISBN-13: 3527341374

DOWNLOAD EBOOK

A one-stop resource on how to design standard-compliant low voltage electrical systems This book helps planning engineers in the design and application of low voltage networks. Structured according to the type of electrical system, e.g. asynchronous motors, three-phase networks, or lighting systems, it covers the respective electrical and electrotechnical fundamentals, provides information on the implementation of the relevant NEC and IEC standards, and gives an overview of applications in industry. Analysis and Design of Electrical Power Systems: A Practical Guide and Commentary on NEC and IEC 60364 starts by introducing readers to the subject before moving on to chapters on planning and project management. It then presents readers with complete coverage of medium- and low-voltage systems, transformers, asynchronous motors (ASM), switchgear combinations, emergency generators, and lighting systems. It also looks at equipment for overcurrent protection and protection against electric shock, as well as selectivity and backup protection. A chapter on the current carrying capacity of conductors and cables comes next, followed by ones on calculation of short circuit currents in three-phase networks and voltage drop calculations. Finally, the book takes a look at compensating for reactive power and finishes with a section on lightning protection systems. Covers a subject of great international importance Features numerous tables, diagrams, and worked examples that help practicing engineers in the planning of electrical systems Written by an expert in the field and member of various national and international standardization committees Supplemented with programs on an accompanying website that help readers reproduce and adapt calculations on their own Analysis and Design of Electrical Power Systems: A Practical Guide and Commentary on NEC and IEC 60364 is an excellent resource for all practicing engineers such as electrical engineers, engineers in power technology, etc. who are involved in electrical systems planning.


Power System Analysis and Design

Power System Analysis and Design

Author: J. Duncan Glover

Publisher: Brooks/Cole

Published: 1994

Total Pages: 620

ISBN-13:

DOWNLOAD EBOOK

The objective of this book is to present methods of power system analysis and design, particularly with the aid of a personal computer, in sufficient depth to give the student the basic theory at the undergraduate level.


The Design of Low-Voltage, Low-Power Sigma-Delta Modulators

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators

Author: Shahriar Rabii

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 198

ISBN-13: 1461551056

DOWNLOAD EBOOK

Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.


Power System

Power System

Author: BR Gupta

Publisher: S. Chand Publishing

Published: 2008

Total Pages: 660

ISBN-13: 9788121922388

DOWNLOAD EBOOK

It is gratifying to note that the book has very widespread acceptance by faculty and students throughout the country.n the revised edition some new topics have been added.Additional solved examples have also been added.The data of transmission system in India has been updated.


Power System Engineering

Power System Engineering

Author: Juergen Schlabbach

Publisher: John Wiley & Sons

Published: 2008-07-21

Total Pages: 354

ISBN-13: 9783527407590

DOWNLOAD EBOOK

Describing in detail how electrical power systems are planned and designed, this monograph illustrates the required structures of systems, substations and equipment using international standards and latest computer methods. The book discusses the advantages and disadvantages of the different arrangements within switchyards and of the topologies of the power systems, describing methods to determine the main design parameters of cables, overhead lines, and transformers needed to realize the supply task, as well as the influence of environmental conditions on the design and the permissible loading of the equipment. Additionally, general requirements for protection schemes and the main schemes related to the various protection tasks are given. With its focus on the requirements and procedures of tendering and project contracting, this book enables the reader to adapt the basics of power systems and equipment design to special tasks and engineering projects.


Design Fundamentals for Low-Voltage Distribution and Control

Design Fundamentals for Low-Voltage Distribution and Control

Author: Frank Kussy

Publisher: Routledge

Published: 2017-11-22

Total Pages: 417

ISBN-13: 1351455966

DOWNLOAD EBOOK

Design Fundamentals for Low-Voltage Distribution and Control provides practical guidelinesfor all aspects of this vital topic. Linking theoretical principles with real hardware designs,the book will help engineers meet safety and regulatory standards, reduce redesign costs,shorten product development and testing cycles, and develop more reliable, efficientequipment.This outstanding reference highlights the determination of reactance and resistances of conductors... discusses heat transfer problems in industrial apparatus . .. and considers shortcircuit and ground fault calculations as well as temperature rise and forces occurring underfault conditions.Design Fundamentals for Low-Voltage Distribution and Control applies thermodynamicprinciples to electrical equipment, including coverage of heat transfer equations, calculationexamples for conductor sizes, and insulation. It provides empirical models to show howhigher order theoretical equations can be practically approximated . . . and includes samplecalculations for magnet size, circuit breakers, fault current, arc interruption, and other propertiesand equipment.In addition, the book compares design requirements for both U.S. and European equipment.Featuring numerous equations, graphs, tables, test procedures, and diagrams, Design Fundamentalsfor Low-Voltage Distribution and Control is an invaluable practical guide for electricaland electronics, design, project, and power engineers involved with the design andapplication of electrical apparatus; and graduate students of electrical engineering, powerengineering, and electro technology.