Analysis and Design of Diversity Techniques for Terrestrial and Underwater Acoustic Communications

Analysis and Design of Diversity Techniques for Terrestrial and Underwater Acoustic Communications

Author: Homa Eghbali

Publisher:

Published: 2013

Total Pages: 151

ISBN-13:

DOWNLOAD EBOOK

Since the early 1880's, wireless broadband communications have been growing at explosive rates. While the personal communication systems have almost exhausted the spectrum, higher and higher data rates are required to support the ever demanding wireless services. Recently, to improve the spectral efficiency, diversity gains, and interference and power management for wireless multimedia and internet services, by combining the signals at both ends and effectively creating multiple parallel spatial data pipes, the multiple-input multiple-output (MIMO) technology has become a convenient framework. Motivated by these practical concerns, this thesis addresses the analysis and design of diversity techniques for terrestrial and underwater acoustic communication channels, in two parts. Part I studies novel relay selection strategies and diversity techniques for single carrier frequency domain equalization (SC-FDE) multi-relay cooperative networks, considering maximum-likelihood (ML) and minimum mean-square error (MMSE) receivers. We further extend our analysis to two-way relaying (TWR) networks, while incorporating different power control techniques. Building on our results on the diversity and error performance of the single relay and TWR cooperative systems, we extend our analysis to design of MMSE-based optimum beamforming matrices at user and relay terminals in a multi-user, multi-antenna TWR cooperative system. We further present a joint user-relay antenna selection algorithm by applying the estimation of distribution algorithm (EDA). The final contribution of the first part of this thesis is to extend our analysis to large relay networks and address the prohibitive computational and implementation complexity cost of the exhaustive search algorithms for joint transceiver/relay beamforming matrix design in large amplify-and-forward (AF) MIMO TWR networks, while incorporating the orthogonal matching pursuit (OMP) algorithm. The second part of this thesis focuses on the performance of differentially encoded space-time and space-frequency block coding techniques for terrestrial and underwater communication channels.


Digital Underwater Acoustic Communications

Digital Underwater Acoustic Communications

Author: Lufen Xu

Publisher: Academic Press

Published: 2016-09-16

Total Pages: 292

ISBN-13: 0128030291

DOWNLOAD EBOOK

Digital Underwater Acoustic Communications focuses on describing the differences between underwater acoustic communication channels and radio channels, discusses loss of transmitted sound in underwater acoustic channels, describes digital underwater acoustic communication signal processing, and provides a comprehensive reference to digital underwater acoustic communication equipment. This book is designed to serve as a reference for postgraduate students and practicing engineers involved in the design and analysis of underwater acoustic communications systems as well as for engineers involved in underwater acoustic engineering. Introduces the basics of underwater acoustics, along with the advanced functionalities needed to achieve reliable communications in underwater environment Identifies challenges in underwater acoustic channels relative to radio channels, underwater acoustic propagation, and solutions Shows how multi-path structures can be thought of as time diversity signals Presents a new, robust signal processing system, and an advanced FH-SS system for multimedia underwater acoustic communications with moderate communication ranges (above 20km) and rates (above 600bps) Describes the APNFM system for underwater acoustic communication equipment (including both civil and military applications), to be employed in active sonar to improve its performance


Underwater Acoustic Digital Signal Processing and Communication Systems

Underwater Acoustic Digital Signal Processing and Communication Systems

Author: Robert Istepanian

Publisher: Springer Science & Business Media

Published: 2002-08-31

Total Pages: 298

ISBN-13: 9780792373049

DOWNLOAD EBOOK

Underwater Acoustic Digital Signal Processing and Communication Systems describes new design and development methodologies in underwater acoustic signal processing. The emphasis is on experimental efforts and modern DSP implementations. The book assembles a number of contributions from authors who have contributed significantly to the field. The topics cover a broad range of underwater acoustic signal processing applications: underwater wireless communciations, array processing for mapping, detection and localization of objects, biotelemetry, speech processing for divers, acoustic imaging, and use of neural networks for underwater signal processing.


Analysis of and Techniques for Adaptive Equalization for Underwater Acoustic Communication

Analysis of and Techniques for Adaptive Equalization for Underwater Acoustic Communication

Author: Ballard Justin Smith Blair

Publisher:

Published: 2011

Total Pages: 215

ISBN-13:

DOWNLOAD EBOOK

Underwater wireless communication is quickly becoming a necessity for applications in ocean science, defense, and homeland security. Acoustics remains the only practical means of accomplishing long-range communication in the ocean. The acoustic communication channel is fraught with difficulties including limited available bandwidth, long delay-spread, time-variability, and Doppler spreading. These difficulties reduce the reliability of the communication system and make high data-rate communication challenging. Adaptive decision feedback equalization is a common method to compensate for distortions introduced by the underwater acoustic channel. Limited work has been done thus far to introduce the physics of the underwater channel into improving and better understanding the operation of a decision feedback equalizer. This thesis examines how to use physical models to improve the reliability and reduce the computational complexity of the decision feedback equalizer. The specific topics covered by this work are: how to handle channel estimation errors for the time varying channel, how to use angular constraints imposed by the environment into an array receiver, what happens when there is a mismatch between the true channel order and the estimated channel order, and why there is a performance difference between the direct adaptation and channel estimation based methods for computing the equalizer coefficients. For each of these topics, algorithms are provided that help create a more robust equalizer with lower computational complexity for the underwater channel.


Spectrally Efficient Underwater Acoustic Communications

Spectrally Efficient Underwater Acoustic Communications

Author: Andreja Radošević

Publisher:

Published: 2012

Total Pages: 186

ISBN-13: 9781267433497

DOWNLOAD EBOOK

In this dissertation, we consider design aspects of spectrally efficient underwater acoustic (UWA) communications. In particular, we first focus on statistical characterization and capacity evaluation of shallow water acoustic communications channels. Wideband single-carrier and multi-carrier probe signals are employed during the Kauai Acoustic Communications MURI 2008 (KAM08) and 2011 (KAM11) experiments, to measure the time-varying channel response, and to estimate its statistical properties and capacity that play an important role in the design of spectrally efficient communication systems. Besides the capacity analysis for unconstrained inputs, we determine new bounds on the achievable information rate for discrete-time Gaussian channels with inter-symbol interference and independent and uniformly distributed channel input symbols drawn from finite-order modulation alphabets. Specifically, we derived new bounds on the achievable rates for sparse channels with long memory. Furthermore, we explore design aspects of adaptive modulation based on orthogonal frequency division multiplexing (OFDM) for UWA communications, and study its performance using real-time at-sea experiments. Lastly, we investigate a channel estimation (CE) method for improving the spectral efficiency of UWA communications. Specifically, we determine the performance of a selective decision directed (DD) CE method for UWA OFDM-based communications.


Underwater Acoustic Sensor Networks

Underwater Acoustic Sensor Networks

Author: Yang Xiao

Publisher: CRC Press

Published: 2010-05-19

Total Pages: 352

ISBN-13: 1420067125

DOWNLOAD EBOOK

A detailed review of underwater channel characteristics, Underwater Acoustic Sensor Networks investigates the fundamental aspects of underwater communication. Prominent researchers from around the world consider contemporary challenges in the development of underwater acoustic sensor networks (UW-ASNs) and introduce a cross-layer approach for effec


Wireless Networking Principles: From Terrestrial to Underwater Acoustic

Wireless Networking Principles: From Terrestrial to Underwater Acoustic

Author: Shengming Jiang

Publisher: Springer

Published: 2018-04-13

Total Pages: 434

ISBN-13: 9811077754

DOWNLOAD EBOOK

This book systematically summarizes the fundamentals and various technologies in both terrestrial radio wireless networks and underwater acoustic networks (UWANs). It addresses the basic issues frequently investigated in terrestrial radio wireless networks and the key technologies suitable for the newly developing research area of UWANs. Starting with a review of our current understanding of wireless networks, it then introduces the principles of the main technologies, including error control, medium access control (MAC) protocols, routing protocols, end-to-end transmission control and mobility issues as well as network security for terrestrial radio wireless networks, and offers detailed surveys of these technologies for UWANs. Providing readers with the basic knowledge of terrestrial radio wireless networking technologies and raising readers’ awareness of the developing topic of UWANs in ocean , it is a valuable resource for researchers and practitioners in terrestrial radio wireless networks and UWANs.


Mitigating the Impact of Ocean Ambient Noise in an Underwater Acoustic Communication System

Mitigating the Impact of Ocean Ambient Noise in an Underwater Acoustic Communication System

Author: Afolarin Egbewande

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

In wireless communication links, receivers are typically designed to mitigate the variability in the propagation channel in presence of arbitrary white Gaussian noise. However, the variations in the instantaneous channel properties introduce high statistical variability in the communication link reliability. In fact, the underwater acoustic channel in the ocean is particularly sensitive to the changes in environmental conditions. Extensive research has been done on the propagation but it is typically assumed that ocean noise compares with terrestrial noise in the design of underwater acoustic receivers. This assumption does not accurately represent the impact of ocean ambient noise on the performance of underwater acoustic communication systems, particularly when using receiver arrays. This dissertation studies the unique properties of oceanic ambient noise, particularly the variability in its directional properties. The application developed in this work focuses on both anthropogenic noise due to vessels and naturally occurring ambient noise within the channel bandwidth. To this end, the characteristics of these noise sources and their impact on the underwater acoustic link are discussed in this dissertation. Firstly, using a compact receiver array, an acoustic source tracking procedure is designed to characterize the directional properties of vessel noise. This is achieved using a maximum-likelihood beamformer to estimate the bearing and a coherence-based matched-field processor to estimate the range of a vessel over its travel duration. Although the performance of most methodologies developed for characterizing vessel noise in literature are evaluated using computer simulations, the algorithm applied in this dissertation are tested with actual measurements of vessel noise from ocean experiments. It is observed that the noise directionality can be estimated accurately using a compact array but relies on the geometry of the array. Secondly, noise models are developed to characterize the unique properties of naturally occurring ambient noise at a compact array of acoustic receivers. Synthetic ambient noise is generated with defined properties and validated against measured ambient noise. Thirdly, the performance of a space-time receiver for signals processed in measured ambient noise is validated against signals processed in synthetic noise processes. It is observed that the variations in the space-time properties of ambient noise do not compare with the usual uncorrelated noise assumption in the design of an underwater acoustic receiver. Also, the bit-error rate of the space-time filter depends on optimizing the training and payload duration in the received signal to adapt to the time-varying property of ocean ambient noise.


Combined Spatial Diversity and Time Equalization for Broadband Multiple Channel Underwater Acoustic Communications

Combined Spatial Diversity and Time Equalization for Broadband Multiple Channel Underwater Acoustic Communications

Author: Violeta Skoro Kaskarovska

Publisher:

Published: 2015

Total Pages: 136

ISBN-13:

DOWNLOAD EBOOK

High data rate acoustic communications become feasible with the use of communication systems that operate at high frequency. The high frequency acoustic transmission in shallow water endures severe distortion as a result of the extensive intersymbol interference and Doppler shift, caused by the time variable multipath nature of the channel. In this research a Single Input Multiple Output (SIMO) acoustic communication system is developed to improve the reliability of the high data rate communications at short range in the shallow water acoustic channel. The proposed SIMO communication system operates at very high frequency and combines spatial diversity and decision feedback equalizer in a multilevel adaptive configuration. The first configuration performs selective combining on the equalized signals from multiple receivers and generates quality feedback parameter for the next level of combining. The second configuration implements a form of turbo equalization to evaluate the individual receivers using the feedback parameters as decision symbols. The improved signals from individual receivers are used in the next iteration of selective combining. Multiple iterations are used to achieve optimal estimate of the received signal. The multilevel adaptive configuration is evaluated on experimental and simulated data using SIMO system with three, four and five receivers. The simulation channel model developed for this research is based on experimental channel and Rician fading channel model. The performance of the channel is evaluated in terms of Bit Error Rate (BER) and Signal-to-Noise-and-Interference Ratio (SNIR). Using experimental data with non-zero BER, multilevel adaptive spatial diversity can achieve BER of 0 % and SNIR gain of 3 dB. The simulation results show that the average BER and SNIR after multilevel combining improve dramatically compared to the single receiver, even in case of extremely high BER of individual received signals. The results demonstrate the ability of the proposed multilevel adaptive combining approach to significantly improve the performance of the shallow water acoustic channel, while preserving the same transmission power and channel bandwidth.