This is the second edition of this best selling problem book for students, now containing over 400 completely solved exercises on differentiable manifolds, Lie theory, fibre bundles and Riemannian manifolds. The exercises go from elementary computations to rather sophisticated tools. Many of the definitions and theorems used throughout are explained in the first section of each chapter where they appear. A 56-page collection of formulae is included which can be useful as an aide-mémoire, even for teachers and researchers on those topics. In this 2nd edition: • 76 new problems • a section devoted to a generalization of Gauss’ Lemma • a short novel section dealing with some properties of the energy of Hopf vector fields • an expanded collection of formulae and tables • an extended bibliography Audience This book will be useful to advanced undergraduate and graduate students of mathematics, theoretical physics and some branches of engineering with a rudimentary knowledge of linear and multilinear algebra.
A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.
This book is a collection of 375 completely solved exercises on differentiable manifolds, Lie groups, fibre bundles, and Riemannian manifolds. The exercises go from elementary computations to rather sophisticated tools. It is the first book consisting of completely solved problems on differentiable manifolds, and therefore will be a complement to the books on theory. A 42-page formulary is included which will be useful as an aide-mémoire, especially for teachers and researchers on these topics. The book includes 50 figures. Audience: The book will be useful to advanced undergraduate and graduate students of mathematics, theoretical physics, and some branches of engineering.
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics. The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory. The Second Edition of this successful textbook offers several notable points of revision. New to the Second Edition: New problems have been added and the level of challenge has been changed to the exercises Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers Includes new sections which provide more comprehensive coverage of topics Features a new chapter on Multilinear Algebra
It is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating the needed definitions and basic results in the area and closes with a short description of the problems. - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuf It is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating the needed definitions and basic results in the area and closes with a short description of the problems. The Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the problems. Students can expect the solutions to be written in a direct language that they can understand; usually the most "natural" rather than the most elegant solution is presented. The Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the problems. Students can expect the solutions to be written in a direct language that they can understand; usually the most “natural” rather than the most elegant solution is presented. - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpufhe Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuft is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpufIt is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuf
This unique collection of new and classical problems provides full coverage of algebraic inequalities. Many of the exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. Algebraic Inequalities can be considered a continuation of the book Geometric Inequalities: Methods of Proving by the authors. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving algebraic inequalities.
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.
Linear algebra is a living, active branch of mathematics which is central to almost all other areas of mathematics, both pure and applied, as well as computer science, the physical and social sciences, and engineering. It entails an extensive corpus of theoretical results as well as a large body of computational techniques. The book is intended to be used in one of several possible ways: (1) as a self-study guide; (2) as a textbook for a course in advanced linear algebra, either at the upper-class undergraduate level or at the first-year graduate level; or (3) as a reference book. It is also designed to prepare a student for the linear algebra portion of prelim exams or PhD qualifying exams. The volume is self-contained to the extent that it does not assume any previous formal knowledge of linear algebra, though the reader is assumed to have been exposed, at least informally, to some basic ideas and techniques, such as the solution of a small system of linear equations over the real numbers. More importantly, it does assume a seriousness of purpose and a modicum of mathematical sophistication. The book also contains over 1000 exercises, many of which are very challenging.
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.