Projective Geometry

Projective Geometry

Author: Albrecht Beutelspacher

Publisher: Cambridge University Press

Published: 1998-01-29

Total Pages: 272

ISBN-13: 9780521483643

DOWNLOAD EBOOK

Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.


Lectures on Curves, Surfaces and Projective Varieties

Lectures on Curves, Surfaces and Projective Varieties

Author: Mauro Beltrametti

Publisher: European Mathematical Society

Published: 2009

Total Pages: 512

ISBN-13: 9783037190647

DOWNLOAD EBOOK

This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.


Projective Geometries Over Finite Fields

Projective Geometries Over Finite Fields

Author: James William Peter Hirschfeld

Publisher: Oxford University Press on Demand

Published: 1998

Total Pages: 555

ISBN-13: 9780198502951

DOWNLOAD EBOOK

I. Introduction 1. Finite fields 2. Projective spaces and algebraic varieties II. Elementary general properties 3. Subspaces 4. Partitions 5. Canonical forms for varieties and polarities III. The line and the plane 6. The line 7. First properties of the plane 8. Ovals 9. Arithmetic of arcs of degree two 10. Arcs in ovals 11. Cubic curves 12. Arcs of higher degree 13. Blocking sets 14. Small planes Appendix Notation References.


Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision

Author: Richard Hartley

Publisher: Cambridge University Press

Published: 2004-03-25

Total Pages: 676

ISBN-13: 1139449141

DOWNLOAD EBOOK

A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.


Algebraic Projective Geometry

Algebraic Projective Geometry

Author: John Greenlees Semple

Publisher:

Published: 2023

Total Pages: 0

ISBN-13: 9781383020601

DOWNLOAD EBOOK

Reissued in the Oxford Classic Texts in the Physical Sciences series, this book provides a clear and systematic introduction to projective geometry, building on concepts from linear algebra.


Projective Geometry and Modern Algebra

Projective Geometry and Modern Algebra

Author: Lars Kadison

Publisher: Birkhäuser Boston

Published: 1996-01-26

Total Pages: 228

ISBN-13: 0817639004

DOWNLOAD EBOOK

The techniques and concepts of modern algebra are introduced for their natural role in the study of projectile geometry; groups appear as automorphism groups of configurations, division rings appear in the study of Desargues' theorem and the study of the independence of the seven axioms given for projectile geometry.


Classical Geometry

Classical Geometry

Author: I. E. Leonard

Publisher: John Wiley & Sons

Published: 2014-04-30

Total Pages: 501

ISBN-13: 1118679148

DOWNLOAD EBOOK

Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.


The Projective Heat Map

The Projective Heat Map

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

Published: 2017-04-20

Total Pages: 210

ISBN-13: 1470435144

DOWNLOAD EBOOK

This book introduces a simple dynamical model for a planar heat map that is invariant under projective transformations. The map is defined by iterating a polygon map, where one starts with a finite planar -gon and produces a new -gon by a prescribed geometric construction. One of the appeals of the topic of this book is the simplicity of the construction that yet leads to deep and far reaching mathematics. To construct the projective heat map, the author modifies the classical affine invariant midpoint map, which takes a polygon to a new polygon whose vertices are the midpoints of the original. The author provides useful background which makes this book accessible to a beginning graduate student or advanced undergraduate as well as researchers approaching this subject from other fields of specialty. The book includes many illustrations, and there is also a companion computer program.