Introduction to Shape Optimization

Introduction to Shape Optimization

Author: J. Haslinger

Publisher: SIAM

Published: 2003-01-01

Total Pages: 276

ISBN-13: 0898715369

DOWNLOAD EBOOK

Treats sizing and shape optimization in a comprehensive way, covering everything from mathematical theory through computational aspects to industrial applications.


Optimal Control of Partial Differential Equations

Optimal Control of Partial Differential Equations

Author: Andrea Manzoni

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 507

ISBN-13: 3030772268

DOWNLOAD EBOOK

This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a “hands-on” treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.


Shape Optimization, Homogenization and Optimal Control

Shape Optimization, Homogenization and Optimal Control

Author: Volker Schulz

Publisher: Springer

Published: 2018-09-05

Total Pages: 276

ISBN-13: 3319904698

DOWNLOAD EBOOK

The contributions in this volume give an insight into current research activities in Shape Optimization, Homogenization and Optimal Control performed in Africa, Germany and internationally. Seeds for collaboration can be found in the first four papers in the field of homogenization. Modelling and optimal control in partial differential equations is the topic of the next six papers, again mixed from Africa and Germany. Finally, new results in the field of shape optimization are discussed in the final international three papers. This workshop, held at the AIMS Center Senegal, March 13-16, 2017, has been supported by the Deutsche Forschungsgemeinschaft (DFG) and by the African Institute for Mathematical Sciences (AIMS) in Senegal, which is one of six centres of a pan-African network of centres of excellence for postgraduate education, research and outreach in mathematical sciences.


Optimization of Elliptic Systems

Optimization of Elliptic Systems

Author: Pekka Neittaanmaki

Publisher: Springer Science & Business Media

Published: 2007-01-04

Total Pages: 514

ISBN-13: 0387272364

DOWNLOAD EBOOK

The present monograph is intended to provide a comprehensive and accessible introduction to the optimization of elliptic systems. This area of mathematical research, which has many important applications in science and technology. has experienced an impressive development during the past two decades. There are already many good textbooks dealing with various aspects of optimal design problems. In this regard, we refer to the works of Pironneau [1984], Haslinger and Neittaanmaki [1988], [1996], Sokolowski and Zolksio [1992], Litvinov [2000], Allaire [2001], Mohammadi and Pironneau [2001], Delfour and Zolksio [2001], and Makinen and Haslinger [2003]. Already Lions [I9681 devoted a major part of his classical monograph on the optimal control of partial differential equations to the optimization of elliptic systems. Let us also mention that even the very first known problem of the calculus of variations, the brachistochrone studied by Bernoulli back in 1696. is in fact a shape optimization problem. The natural richness of this mathematical research subject, as well as the extremely large field of possible applications, has created the unusual situation that although many important results and methods have already been est- lished, there are still pressing unsolved questions. In this monograph, we aim to address some of these open problems; as a consequence, there is only a minor overlap with the textbooks already existing in the field.


Optimization with PDE Constraints

Optimization with PDE Constraints

Author: Ronald Hoppe

Publisher: Springer

Published: 2014-09-11

Total Pages: 422

ISBN-13: 3319080253

DOWNLOAD EBOOK

This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).


Shape Optimization Problems

Shape Optimization Problems

Author: Hideyuki Azegami

Publisher: Springer Nature

Published: 2020-09-30

Total Pages: 662

ISBN-13: 9811576181

DOWNLOAD EBOOK

This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.


Shape Optimization And Optimal Design

Shape Optimization And Optimal Design

Author: John Cagnol

Publisher: CRC Press

Published: 2017-08-02

Total Pages: 458

ISBN-13: 9780203904169

DOWNLOAD EBOOK

This volume presents developments and advances in modelling passive and active control systems governed by partial differential equations. It emphasizes shape analysis, optimal shape design, controllability, nonlinear boundary control, and stabilization. The authors include essential data on exact boundary controllability of thermoelastic plates with variable transmission coefficients.


Approximation Methods in Optimization of Nonlinear Systems

Approximation Methods in Optimization of Nonlinear Systems

Author: Peter I. Kogut

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-12-02

Total Pages: 352

ISBN-13: 3110668521

DOWNLOAD EBOOK

The monograph addresses some problems particularly with regard to ill-posedness of boundary value problems and problems where we cannot expect to have uniqueness of their solutions in the standard functional spaces. Bringing original and previous results together, it tackles computational challenges by exploiting methods of approximation and asymptotic analysis and harnessing differences between optimal control problems and their underlying PDEs


Shape Optimization by the Homogenization Method

Shape Optimization by the Homogenization Method

Author: Gregoire Allaire

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 1468492861

DOWNLOAD EBOOK

This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.