Handbook of Materials Modeling

Handbook of Materials Modeling

Author: Sidney Yip

Publisher: Springer Science & Business Media

Published: 2007-11-17

Total Pages: 2903

ISBN-13: 1402032862

DOWNLOAD EBOOK

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.


Annual Reviews of Computational Physics

Annual Reviews of Computational Physics

Author: Dietrich Stauffer

Publisher: World Scientific

Published: 2001

Total Pages: 340

ISBN-13: 9789812811578

DOWNLOAD EBOOK

The ninth volume of Annual Reviews of Computational Physics has as a special feature a comprehensive compendium of interatomic potentials as used for materials properties. Other articles deal with simulations of magnetic nanostructures, improved Monte Carlo methods (e.g. for nucleation studies in Ising models), fluid dynamics with large mean free paths, the growing field of OC sociophysics, OCO and teaching of undergraduate computational physics (including an introduction to Java)."


Physics of Surface, Interface and Cluster Catalysis

Physics of Surface, Interface and Cluster Catalysis

Author: Hideaki Kasai

Publisher:

Published: 2016

Total Pages: 0

ISBN-13: 9780750311663

DOWNLOAD EBOOK

Physics of Surface, Interface and Cluster Catalysis reviews the fundamental physics of catalysis from simple surface models through to complex cluster and catalytic structures. It is the first book to provide a coherent collection of the physics of catalysis, and shows how physics has provided and continues to provide clarity and insight into many complex catalysis problems, reviewing both recent developments and prospects for future developments in the field.


A Guide to Monte Carlo Simulations in Statistical Physics

A Guide to Monte Carlo Simulations in Statistical Physics

Author: David P. Landau

Publisher: Cambridge University Press

Published: 2000-08-17

Total Pages: 402

ISBN-13: 9780521653664

DOWNLOAD EBOOK

This book describes all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, as well as in related fields, such as polymer science and lattice gauge theory. The authors give a succinct overview of simple sampling methods and develop the importance sampling method. In addition they introduce quantum Monte Carlo methods, aspects of simulations of growth phenomena and other systems far from equilibrium, and the Monte Carlo Renormalization Group approach to critical phenomena. The book includes many applications, examples, and current references, and exercises to help the reader.


Understanding Molecular Simulation

Understanding Molecular Simulation

Author: Daan Frenkel

Publisher: Elsevier

Published: 2001-10-19

Total Pages: 661

ISBN-13: 0080519989

DOWNLOAD EBOOK

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.


Adsorption and Diffusion

Adsorption and Diffusion

Author: Hellmut G. Karge

Publisher: Springer Science & Business Media

Published: 2008-06-17

Total Pages: 411

ISBN-13: 3540739661

DOWNLOAD EBOOK

"Molecular Sieves - Science and Technology" covers, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. The contributions are grouped together topically in such a way that each volume deals with a specific sub-field. Volume 7 treats fundamentals and analyses of adsorption and diffusion in zeolites including single-file diffusion. Various methods of measuring adsorption and diffusion are described and discussed.


Lattice Gauge Theories And Monte Carlo Simulations

Lattice Gauge Theories And Monte Carlo Simulations

Author: Claudio Rebbi

Publisher: World Scientific

Published: 1983-07-01

Total Pages: 675

ISBN-13: 9814590932

DOWNLOAD EBOOK

This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.


Atomistic Simulation of Anistropic Crystal Structures at Nanoscale

Atomistic Simulation of Anistropic Crystal Structures at Nanoscale

Author: Jia Fu

Publisher: BoD – Books on Demand

Published: 2019-05-10

Total Pages: 180

ISBN-13: 1838802010

DOWNLOAD EBOOK

Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.


Modeling and Simulation of Heterogeneous Catalytic Reactions

Modeling and Simulation of Heterogeneous Catalytic Reactions

Author: Olaf Deutschmann

Publisher: John Wiley & Sons

Published: 2013-09-18

Total Pages: 364

ISBN-13: 3527639888

DOWNLOAD EBOOK

The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.