Electron Scattering and Related Spectroscopies

Electron Scattering and Related Spectroscopies

Author: Maurizio De Crescenzi

Publisher: World Scientific

Published: 1996

Total Pages: 430

ISBN-13: 9789810223007

DOWNLOAD EBOOK

The main purpose of this book is to provide an overview of all phenomena which can be categorized under the general label of ?electron scattering?, and to give a comprehensive description of all spectroscopical techniques related to electron scattering phenomena. Various classes of events are examined (electron in-electron out, photon in-electron out, electron in-two electron out, electron diffraction), together with the corresponding experimental techniques. A description of the underlying physics of various electron scattering phenomena is provided. For each spectroscopy, the general principles, the main fields of application, and some selected representative cases are discussed. The use of relatively low-cost electron sources is emphasized with respect to photon sources. The book is directed to PhD students and researchers not necessarily yet expert in the field.


Auger Electron Spectroscopy

Auger Electron Spectroscopy

Author: Donald T. Hawkins

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 305

ISBN-13: 1468413872

DOWNLOAD EBOOK

Auger electron spectroscopy is rapidly developing into the single most powerful analytical technique in basic and applied science.for investigating the chemical and structural properties of solids. Its ex plosive growth beginning in 1967 was triggered by the development of Auger analyzers capable of de tecting one atom layer of material in a fraction of a second. Continued growth was guaranteed firstly by the commercial availability of apparatus which combined the capabilities of scanning electron mi croscopy and ion-mill depth profiling with Auger analysis, and secondly by the increasing need to know the atomistics of many processes in fundamental research and engineering applications. The expanding use of Auger analysis was accompanied by an increase in the number of publications dealing with it. Because of the developing nature of Auger spectroscopy, the articles have appeared in many different sources covering diverse disciplines, so that it is extremely difficult to discover just what has or has not been subjected to Auger analysis. In this situation, a comprehensive bibliography is obviou-sly useful to those both inside and outside the field. For those in the field, this bibliography should be a wonderful time saver for locating certain references, in researching a particular topic, or when considering various aspects of instrumentation or data analysis. This bibliography not only provides the most complete listing of references pertinent to surface Auger analysis available today, but it is also a basis for extrapolating from past trends to future expectations.


Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams

Author: Ivo Utke

Publisher: Oxford University Press

Published: 2012-03-05

Total Pages: 830

ISBN-13: 0199920990

DOWNLOAD EBOOK

Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.