An Introductory Course in Functional Analysis

An Introductory Course in Functional Analysis

Author: Adam Bowers

Publisher: Springer

Published: 2014-12-11

Total Pages: 242

ISBN-13: 1493919458

DOWNLOAD EBOOK

Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn–Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman–Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study.


A First Course in Functional Analysis

A First Course in Functional Analysis

Author: Orr Moshe Shalit

Publisher: CRC Press

Published: 2017-03-16

Total Pages: 257

ISBN-13: 1498771629

DOWNLOAD EBOOK

Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.


A Course in Functional Analysis

A Course in Functional Analysis

Author: John B Conway

Publisher: Springer

Published: 2019-03-09

Total Pages: 416

ISBN-13: 1475743831

DOWNLOAD EBOOK

This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS


A First Course in Functional Analysis

A First Course in Functional Analysis

Author: Martin Davis

Publisher: Courier Corporation

Published: 2013-05-27

Total Pages: 129

ISBN-13: 0486315819

DOWNLOAD EBOOK

Designed for undergraduate mathematics majors, this self-contained exposition of Gelfand's proof of Wiener's theorem explores set theoretic preliminaries, normed linear spaces and algebras, functions on Banach spaces, homomorphisms on normed linear spaces, and more. 1966 edition.


A First Course in Functional Analysis

A First Course in Functional Analysis

Author: Caspar Goffman

Publisher: American Mathematical Soc.

Published: 2017-02-13

Total Pages: 297

ISBN-13: 1470429691

DOWNLOAD EBOOK

This second edition includes exercises at the end of each chapter, revised bibliographies, references and an index.


Functional Analysis

Functional Analysis

Author: Sergei Ovchinnikov

Publisher: Springer

Published: 2018-06-09

Total Pages: 210

ISBN-13: 3319915126

DOWNLOAD EBOOK

This concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each chapter provide ample opportunities for practice with the material. Proofs of theorems such as the Uniform Boundedness Theorem, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results. The prerequisites for this book are linear algebra and elementary real analysis, with two introductory chapters providing an overview of material necessary for the subsequent text. Functional Analysis offers an elementary approach ideal for the upper-undergraduate or beginning graduate student. Primarily intended for a one-semester introductory course, this text is also a perfect resource for independent study or as the basis for a reading course.


A Course in Functional Analysis and Measure Theory

A Course in Functional Analysis and Measure Theory

Author: Vladimir Kadets

Publisher: Springer

Published: 2018-07-10

Total Pages: 553

ISBN-13: 3319920049

DOWNLOAD EBOOK

Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.


Introduction to Functional Analysis

Introduction to Functional Analysis

Author: Christian Clason

Publisher: Springer Nature

Published: 2020-11-30

Total Pages: 166

ISBN-13: 3030527840

DOWNLOAD EBOOK

Functional analysis has become one of the essential foundations of modern applied mathematics in the last decades, from the theory and numerical solution of differential equations, from optimization and probability theory to medical imaging and mathematical image processing. This textbook offers a compact introduction to the theory and is designed to be used during one semester, fitting exactly 26 lectures of 90 minutes each. It ranges from the topological fundamentals recalled from basic lectures on real analysis to spectral theory in Hilbert spaces. Special attention is given to the central results on dual spaces and weak convergence.


Introductory Functional Analysis with Applications

Introductory Functional Analysis with Applications

Author: Erwin Kreyszig

Publisher: John Wiley & Sons

Published: 1991-01-16

Total Pages: 706

ISBN-13: 0471504599

DOWNLOAD EBOOK

KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry


A First Course in Functional Analysis

A First Course in Functional Analysis

Author: Rabindranath Sen

Publisher: Anthem Press

Published: 2014-11-01

Total Pages: 486

ISBN-13: 1783083247

DOWNLOAD EBOOK

This book provides the reader with a comprehensive introduction to functional analysis. Topics include normed linear and Hilbert spaces, the Hahn-Banach theorem, the closed graph theorem, the open mapping theorem, linear operator theory, the spectral theory, and a brief introduction to the Lebesgue measure. The book explains the motivation for the development of these theories, and applications that illustrate the theories in action. Applications in optimal control theory, variational problems, wavelet analysis and dynamical systems are also highlighted. ‘A First Course in Functional Analysis’ will serve as a ready reference to students not only of mathematics, but also of allied subjects in applied mathematics, physics, statistics and engineering.