This book is intended to meet the requirements of the fresh engineers on the field to endow them with indispensable information, technical know-how to work in the power plant industries and its associated plants. The book provides a thorough understanding and the operating principles to solve the elementary and the difficult problems faced by the modern young engineers while working in the industries. This book is written on the basis of ‘hands-on’ experience, sound and in-depth knowledge gained by the authors during their experiences faced while working in this field. The problem generally occurs in the power plants during operation and maintenance. It has been explained in a lucid language.
This book illustrates operation and maintenance practices/guidelines for economic generation and managing health of a thermal power generator beyond its regulatory life. The book provides knowledge for professionals managing power station operations, through its unique approach to chemical analysis of water, steam, oil etc. to identify malfunctioning/defects in equipment/systems much before the physical manifestation of the problem. The book also contains a detailed procedure for conducting performance evaluation tests on different equipment, and for analyzing test results for predicting maintenance requirements, which has lent a new dimension to power systems operation and maintenance practices. A number of real life case studies also enrich the book. This book will prove particularly useful to power systems operations professionals in the developing economies, and also to researchers and students involved in studying power systems operations and control.
This textbook has been designed for a one-semester course on Power Plant Engineering studied by both degree and diploma students of mechanical and electrical engineering. It effectively exposes the students to the basics of power generation involved in several energy conversion systems so that they gain comprehensive knowledge of the operation of various types of power plants in use today. After a brief introduction to energy fundamentals including the environmental impacts of power generation, the book acquaints the students with the working principles, design and operation of five conventional power plant systems, namely thermal, nuclear, hydroelectric, diesel and gas turbine. The economic factors of power generation with regard to estimation and prediction of load, plant design, plant operation, tariffs and so on, are discussed and illustrated with the help of several solved numerical problems. The generation of electric power using renewable energy sources such as solar, wind, biomass, geothermal, tidal, fuel cells, magneto hydrodynamic, thermoelectric and thermionic systems, is discussed elaborately. The book is interspersed with solved problems for a sound understanding of the various aspects of power plant engineering. The chapter-end questions are intended to provide the students with a thorough reinforcement of the concepts discussed.
Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power plants, with chapters in steam power plant systems, start up and shut down, and interlock and protection. Its practical approach is ideal for engineering professionals. Focuses exclusively on thermal power, addressing some new frontiers specific to thermal plants Presents both technology and design aspects of thermal power plants, with special treatment on plant operating practices and troubleshooting Features a practical approach ideal for professionals, but can also be used to complement undergraduate and graduate studies
Power-plant Control and Instrumentation, 2nd edition - contents include a wide variety of plant and combustion arrangements, from smaller boiler systems to full-scale generators, common principles, commercial aspects, measurement, and key techniques such as cogeneration and combined cycle.
An exploration of how advances in computing technology and research can be combined to extend the capabilities and economics of modern power plants. The contributors, from academia as well as practising engineers, illustrate how the various methodologies can be applied to power plant operation.
This book explains the modelling and simulation of thermal power plants, and introduces readers to the equations needed to model a wide range of industrial energy processes. Also featuring a wealth of illustrative, real-world examples, it covers all types of power plants, including nuclear, fossil-fuel, solar and biomass. The book is based on the authors’ expertise and experience in the theory of power plant modelling and simulation, developed over many years of service with EDF. In more than forty examples, they demonstrate the component elements involved in a broad range of energy production systems, with detailed test cases for each chemical, thermodynamic and thermo-hydraulic model. Each of the test cases includes the following information: • component description and parameterization data; • modelling hypotheses and simulation results; • fundamental equations and correlations, with their validity domains; • model validation, and in some cases, experimental validation; and • single-phase flow and two-phase flow modelling equations, which cover all water and steam phases. A practical volume that is intended for a broad readership, from students and researchers, to professional engineers, this book offers the ideal handbook for the modelling and simulation of thermal power plants. It is also a valuable aid in understanding the physical and chemical phenomena that govern the operation of power plants and energy processes.
This book provides a reference to analysis techniques of common cooling water system problems and a historical perspective on solutions to chronic cooling water system problems, such as corrosion and biofouling. It covers best design practices for cooling water systems that are required to support the operation of all electric power plants. Plant engineers will gain better understanding of the practical issues associated with their cooling water systems and new designs or modifications of their systems should consider the actual challenges to the systems. The book is intended for graduate students and practicing engineers working in both nuclear and fossil power plants and industrial facilities that use large amounts of cooling water.
The book provides highly specialized researchers and practitioners with a major contribution to mathematical models’ developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.
The definitive reference on the role of steam in the production and operation of power plants for electric generation and industrial process applications For more than 80 years, Steam Plant Operation has been an unmatched source of information on steam power plants, including design, operation, and maintenance. The Tenth Edition emphasizes the importance of devising a comprehensive energy plan utilizing all economical sources of energy, including fossil fuels, nuclear power, and renewable energy sources. This trusted classic discusses the important role that steam plays in our power production and identifies the associated risks and potential problems of other energy sources. You will find concise explanations of key concepts, from fundamentals through design and operation. For energy students, Steam Plant Operation provides a solid introduction to steam power plant technology. This practical guide includes common power plant calculations such as plant heat rate, boiler efficiency, pump performance, combustion processes, and explains the systems necessary to control plant emissions. Numerous illustrations and clear presentation of the material will prove invaluable for those preparing for an operator’s license exam. Examples throughout show real-world application of the topics discussed. COVERAGE INCLUDES: • Steam and Its Importance • Boilers • Design and Construction of Boilers • Combustion of Fuels • Boiler Settings, Combustion Systems, and Auxiliary Equipment • Boiler Accessories • Operation and Maintenance of Boilers • Pumps • Steam Turbines, Condensers, and Cooling Towers • Operating and Maintaining Steam Turbines, Condensers, Cooling Towers, and Auxiliaries • Auxiliary Steam Plant Equipment • Environmental Control Systems • Waste-to-Energy Plants