Blow-up Theories for Semilinear Parabolic Equations

Blow-up Theories for Semilinear Parabolic Equations

Author: Bei Hu

Publisher: Springer

Published: 2011-03-17

Total Pages: 137

ISBN-13: 364218460X

DOWNLOAD EBOOK

There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.


Blow-Up in Quasilinear Parabolic Equations

Blow-Up in Quasilinear Parabolic Equations

Author: A. A. Samarskii

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 561

ISBN-13: 3110889862

DOWNLOAD EBOOK

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)


Nonlinear Evolution Equations

Nonlinear Evolution Equations

Author: Michael G. Crandall

Publisher:

Published: 1978

Total Pages: 282

ISBN-13:

DOWNLOAD EBOOK

This volume constitutes the proceedings of the Symposium on Nonlinear Evolution Equations held in Madison, October 17-19, 1977. The thirteen papers presented herein follow the order of the corresponding lectures. This symposium was sponsored by the Army Research Office, the National Science Foundation, and the Office of Naval Research.


Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Author: Victor A. Galaktionov

Publisher: CRC Press

Published: 2014-09-22

Total Pages: 565

ISBN-13: 1482251736

DOWNLOAD EBOOK

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.The book


An Introduction to Semilinear Evolution Equations

An Introduction to Semilinear Evolution Equations

Author: Thierry Cazenave

Publisher: Oxford University Press

Published: 1998

Total Pages: 204

ISBN-13: 9780198502777

DOWNLOAD EBOOK

This book presents in a self-contained form the typical basic properties of solutions to semilinear evolutionary partial differential equations, with special emphasis on global properties. It has a didactic ambition and will be useful for an applied readership as well as theoretical researchers.


Nonlinear Diffusion Equations and Their Equilibrium States, 3

Nonlinear Diffusion Equations and Their Equilibrium States, 3

Author: N.G Lloyd

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 567

ISBN-13: 1461203937

DOWNLOAD EBOOK

Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep math ematical questions posed by such equations and the important role they play in many areas of science and technology. Examples of current inter est are biological and chemical pattern formation, semiconductor design, environmental problems such as solute transport in groundwater flow, phase transitions and combustion theory. Central to the theory is the equation Ut = ~cp(U) + f(u). Here ~ denotes the n-dimensional Laplacian, cp and f are given functions and the solution is defined on some domain n x [0, T] in space-time. FUn damental questions concern the existence, uniqueness and regularity of so lutions, the existence of interfaces or free boundaries, the question as to whether or not the solution can be continued for all time, the asymptotic behavior, both in time and space, and the development of singularities, for instance when the solution ceases to exist after finite time, either through extinction or through blow up.


Elliptic And Parabolic Problems, Proceedings Of The 4th European Conference

Elliptic And Parabolic Problems, Proceedings Of The 4th European Conference

Author: Josef Bemelmans

Publisher: World Scientific

Published: 2002-08-06

Total Pages: 505

ISBN-13: 9814488275

DOWNLOAD EBOOK

This book provides an overview of the state of the art in important subjects, including — besides elliptic and parabolic issues — geometry, free boundary problems, fluid mechanics, evolution problems in general, calculus of variations, homogenization, control, modeling and numerical analysis.


Superlinear Parabolic Problems

Superlinear Parabolic Problems

Author: Pavol Quittner

Publisher: Springer Science & Business Media

Published: 2007-12-16

Total Pages: 593

ISBN-13: 3764384425

DOWNLOAD EBOOK

This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The book is self-contained and up-to-date, taking special care on the didactical preparation of the material. It is devoted to problems that are intensively studied but have not been treated thus far in depth in the book literature.


Proceedings of the 4th European Conference, Elliptic and Parabolic Problems

Proceedings of the 4th European Conference, Elliptic and Parabolic Problems

Author: Josef Bemelmans

Publisher: World Scientific

Published: 2002

Total Pages: 508

ISBN-13: 9789812380456

DOWNLOAD EBOOK

This book provides an overview of the state of the art in important subjects, including ? besides elliptic and parabolic issues ? geometry, free boundary problems, fluid mechanics, evolution problems in general, calculus of variations, homogenization, control, modeling and numerical analysis.


Spatial Patterns

Spatial Patterns

Author: L.A. Peletier

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 347

ISBN-13: 1461201357

DOWNLOAD EBOOK

The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations.