An Introduction to Stochastic Thermodynamics

An Introduction to Stochastic Thermodynamics

Author: Naoto Shiraishi

Publisher: Springer Nature

Published: 2023-05-08

Total Pages: 437

ISBN-13: 9811981868

DOWNLOAD EBOOK

This book presents the fundamentals of stochastic thermodynamics, one of the most central subjects in non-equilibrium statistical mechanics. It also explores many recent advances, e.g., in information thermodynamics, the thermodynamic uncertainty relation, and the trade-off relation between efficiency and power. The content is divided into three main parts, the first of which introduces readers to fundamental topics in stochastic thermodynamics, e.g., the basics of stochastic processes, the fluctuation theorem and its variants, information thermodynamics, and large deviation theory. In turn, parts two and three explore advanced topics such as autonomous engines (engines not controlled externally) and finite speed engines, while also explaining the key concepts from recent stochastic thermodynamics theory that are involved. To fully benefit from the book, readers only need an undergraduate-level background in statistical mechanics and quantum mechanics; no background in information theory or stochastic processes is needed. Accordingly, the book offers a valuable resource for early graduate or higher-level readers who are unfamiliar with this subject but want to keep up with the cutting-edge research in this field. In addition, the author’s vivid descriptions interspersed throughout the book will help readers grasp ‘living’ research developments and begin their own research in this field.


Stochastic Thermodynamics

Stochastic Thermodynamics

Author: Luca Peliti

Publisher: Princeton University Press

Published: 2021-07-06

Total Pages: 272

ISBN-13: 0691201773

DOWNLOAD EBOOK

The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course


Quantum Stochastic Thermodynamics

Quantum Stochastic Thermodynamics

Author: Philipp Strasberg

Publisher: Oxford University Press

Published: 2022

Total Pages: 337

ISBN-13: 0192895583

DOWNLOAD EBOOK

The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.


An Introduction to Statistical Mechanics and Thermodynamics

An Introduction to Statistical Mechanics and Thermodynamics

Author: Robert H. Swendsen

Publisher: Oxford University Press

Published: 2012-03

Total Pages: 422

ISBN-13: 0199646945

DOWNLOAD EBOOK

This text presents statistical mechanics and thermodynamics as a theoretically integrated field of study. It stresses deep coverage of fundamentals, providing a natural foundation for advanced topics. The large problem sets (with solutions for teachers) include many computational problems to advance student understanding.


Statistical Dynamics

Statistical Dynamics

Author: R. F. Streater

Publisher: Imperial College Press

Published: 2009

Total Pages: 393

ISBN-13: 1848162448

DOWNLOAD EBOOK

How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time? This book answers the question for classical probability (Part I) and quantum probability (Part II). A novel feature is the introduction of heat particles which supply thermal noise and represent the kinetic energy of the molecules. When applied to chemical reactions, the theory leads to the usual nonlinear reaction-diffusion equations as well as modifications of them. These can exhibit oscillations, or can converge to equilibrium.In this second edition, the text is simplified in parts and the bibliography has been expanded. The main difference is the addition of two new chapters; in the first, classical fluid dynamics is introduced. A lattice model is developed, which in the continuum limit gives us the Euler equations. The five Navier-Stokes equations are also presented, modified by a diffusion term in the continuity equation. The second addition is in the last chapter, which now includes estimation theory, both classical and quantum, using information geometry.


Quantum Stochastic Thermodynamics

Quantum Stochastic Thermodynamics

Author: Philipp Strasberg

Publisher: Oxford University Press

Published: 2021-12-01

Total Pages: 320

ISBN-13: 0192648144

DOWNLOAD EBOOK

The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.


Introduction To Stochastic Processes And Nonequilibrium Statistical Physics, An (Revised Edition)

Introduction To Stochastic Processes And Nonequilibrium Statistical Physics, An (Revised Edition)

Author: Horacio Sergio Wio

Publisher: World Scientific Publishing Company

Published: 2012-09-05

Total Pages: 319

ISBN-13: 9814434639

DOWNLOAD EBOOK

This book aims to provide a compact and unified introduction to the most important aspects in the physics of non-equilibrium systems. It first introduces stochastic processes and some modern tools and concepts that have proved their usefulness to deal with non-equilibrium systems from a purely probabilistic angle. The aim is to show the important role played by fluctuations in far-from-equilibrium situations, where noise can promote order and organization, switching among non-equilibrium states, etc. The second part adopts a more historical perspective, retracing the first steps taken from the purely thermodynamic as well as from the kinetic points of view to depart (albeit slightly) from equilibrium. The third part revisits the path outlined in the first one, but now undertakes the mesoscopic description of extended systems, where new phenomena (patterns, long-range correlations, scaling far from equilibrium, etc.) are observed.This book is a revised and extended version of an earlier edition published in 1994. It includes topics of current research interest in far-from-equilibrium situations like noise-induced phenomena and free energy-like functionals, surface growth and roughening, etc. It can be used as an advanced textbook by graduate students in physics. It also covers topics of current interest in other disciplines and interdisciplinary approaches in engineering, biophysics, and economics, among others. The level of detail in the book is enough to capture the interest of the reader and facilitate the path to more learning by exploring the modern research literature provided. At the same time, the book is also complete enough to be self-contained for those readers who just need an overview of the subject.


Statistical Thermodynamics And Stochastic Theory Of Nonequilibrium Systems

Statistical Thermodynamics And Stochastic Theory Of Nonequilibrium Systems

Author: Ebeling Werner

Publisher: World Scientific Publishing Company

Published: 2005-09-23

Total Pages: 344

ISBN-13: 9813104635

DOWNLOAD EBOOK

This book presents both the fundamentals and the major research topics in statistical physics of systems out of equilibrium. It summarizes different approaches to describe such systems on the thermodynamic and stochastic levels, and discusses a variety of areas including reactions, anomalous kinetics, and the behavior of self-propelling particles.


Statistical Thermodynamics and Stochastic Kinetics

Statistical Thermodynamics and Stochastic Kinetics

Author: Yiannis N. Kaznessis

Publisher: Cambridge University Press

Published: 2011-12-01

Total Pages: 329

ISBN-13: 1139504274

DOWNLOAD EBOOK

Presenting the key principles of thermodynamics from a microscopic point of view, this book provides engineers with the knowledge they need to apply thermodynamics and solve engineering challenges at the molecular level. It clearly explains the concepts of entropy and free energy, emphasizing key ideas used in equilibrium applications, whilst stochastic processes, such as stochastic reaction kinetics, are also covered. It provides a classical microscopic interpretation of thermodynamic properties, which is key for engineers, rather than focusing on more esoteric concepts of statistical mechanics and quantum mechanics. Coverage of molecular dynamics and Monte Carlo simulations as natural extensions of the theoretical treatment of statistical thermodynamics is also included, teaching readers how to use computer simulations and thus enabling them to understand and engineer the microcosm. Featuring many worked examples and over 100 end-of-chapter exercises, it is ideal for use in the classroom as well as for self-study.