An Introduction to Natural Computation

An Introduction to Natural Computation

Author: Dana H. Ballard

Publisher: MIT Press

Published: 1999-01-22

Total Pages: 338

ISBN-13: 9780262522588

DOWNLOAD EBOOK

This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brains programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It stresses the broad spectrum of learning models—ranging from neural network learning through reinforcement learning to genetic learning—and situates the various models in their appropriate neural context. To write about models of the brain before the brain is fully understood is a delicate matter. Very detailed models of the neural circuitry risk losing track of the task the brain is trying to solve. At the other extreme, models that represent cognitive constructs can be so abstract that they lose all relationship to neurobiology. An Introduction to Natural Computation takes the middle ground and stresses the computational task while staying near the neurobiology.


Introduction to Natural Language Processing

Introduction to Natural Language Processing

Author: Jacob Eisenstein

Publisher: MIT Press

Published: 2019-10-01

Total Pages: 535

ISBN-13: 0262042843

DOWNLOAD EBOOK

A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.


Handbook of Natural Computing

Handbook of Natural Computing

Author: Grzegorz Rozenberg

Publisher: Springer

Published: 2012-07-09

Total Pages: 2052

ISBN-13: 9783540929093

DOWNLOAD EBOOK

Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.


The Nature of Computation

The Nature of Computation

Author: Cristopher Moore

Publisher: OUP Oxford

Published: 2011-08-11

Total Pages: 1498

ISBN-13: 0191620807

DOWNLOAD EBOOK

Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid and playful explanation of the P vs. NP problem, explaining why it is so fundamental, and so hard to resolve. They then lead the reader through the complexity of mazes and games; optimization in theory and practice; randomized algorithms, interactive proofs, and pseudorandomness; Markov chains and phase transitions; and the outer reaches of quantum computing. At every turn, they use a minimum of formalism, providing explanations that are both deep and accessible. The book is intended for graduate and undergraduate students, scientists from other areas who have long wanted to understand this subject, and experts who want to fall in love with this field all over again.


Introduction to Evolutionary Computing

Introduction to Evolutionary Computing

Author: A.E. Eiben

Publisher: Springer Science & Business Media

Published: 2007-08-06

Total Pages: 328

ISBN-13: 9783540401841

DOWNLOAD EBOOK

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.


Theoretical and Experimental DNA Computation

Theoretical and Experimental DNA Computation

Author: Martyn Amos

Publisher: Springer Science & Business Media

Published: 2005-10-17

Total Pages: 180

ISBN-13: 3540281312

DOWNLOAD EBOOK

This book provides a broad overview of the entire field of DNA computation, tracing its history and development. It contains detailed descriptions of all major theoretical models and experimental results to date and discusses potential future developments. It concludes by outlining the challenges currently faced by researchers in the field. This book will be a useful reference for researchers and students, as well as an accessible introduction for those new to the field.


Bioinspired Computation in Combinatorial Optimization

Bioinspired Computation in Combinatorial Optimization

Author: Frank Neumann

Publisher: Springer Science & Business Media

Published: 2010-11-04

Total Pages: 215

ISBN-13: 3642165443

DOWNLOAD EBOOK

Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.


A Gentle Introduction to Effective Computing in Quantitative Research

A Gentle Introduction to Effective Computing in Quantitative Research

Author: Harry J. Paarsch

Publisher: MIT Press

Published: 2016-05-06

Total Pages: 777

ISBN-13: 0262333996

DOWNLOAD EBOOK

A practical guide to using modern software effectively in quantitative research in the social and natural sciences. This book offers a practical guide to the computational methods at the heart of most modern quantitative research. It will be essential reading for research assistants needing hands-on experience; students entering PhD programs in business, economics, and other social or natural sciences; and those seeking quantitative jobs in industry. No background in computer science is assumed; a learner need only have a computer with access to the Internet. Using the example as its principal pedagogical device, the book offers tried-and-true prototypes that illustrate many important computational tasks required in quantitative research. The best way to use the book is to read it at the computer keyboard and learn by doing. The book begins by introducing basic skills: how to use the operating system, how to organize data, and how to complete simple programming tasks. For its demonstrations, the book uses a UNIX-based operating system and a set of free software tools: the scripting language Python for programming tasks; the database management system SQLite; and the freely available R for statistical computing and graphics. The book goes on to describe particular tasks: analyzing data, implementing commonly used numerical and simulation methods, and creating extensions to Python to reduce cycle time. Finally, the book describes the use of LaTeX, a document markup language and preparation system.


Deep Learning

Deep Learning

Author: Ian Goodfellow

Publisher: MIT Press

Published: 2016-11-10

Total Pages: 801

ISBN-13: 0262337371

DOWNLOAD EBOOK

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.


Mathematics and Computation

Mathematics and Computation

Author: Avi Wigderson

Publisher: Princeton University Press

Published: 2019-10-29

Total Pages: 434

ISBN-13: 0691189137

DOWNLOAD EBOOK

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography