An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology

An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology

Author: James Sneyd

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 194

ISBN-13: 0821828169

DOWNLOAD EBOOK

In many respects, biology is the new frontier for applied mathematicians. This book demonstrates the important role mathematics plays in the study of some biological problems. It introduces mathematicians to the biological sciences and provides enough mathematics for bioscientists to appreciate the utility of the modelling approach. The book presents a number of diverse topics, such as neurophysiology, cell biology, immunology, and human genetics. It examines how research is done, what mathematics is used, what the outstanding questions are, and how to enter the field. Also given is a brief historical survey of each topic, putting current research into perspective. The book is suitable for mathematicians and biologists interested in mathematical methods in biology.


Using the Mathematics Literature

Using the Mathematics Literature

Author: Kristine K. Fowler

Publisher: CRC Press

Published: 2004-05-25

Total Pages: 404

ISBN-13: 1482276445

DOWNLOAD EBOOK

This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathemati


A Course in Mathematical Biology

A Course in Mathematical Biology

Author: Gerda de Vries

Publisher: SIAM

Published: 2006-07-01

Total Pages: 307

ISBN-13: 0898716128

DOWNLOAD EBOOK

This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.


An Introduction to Optimal Control Problems in Life Sciences and Economics

An Introduction to Optimal Control Problems in Life Sciences and Economics

Author: Sebastian Aniţa

Publisher: Springer Science & Business Media

Published: 2011-05-05

Total Pages: 241

ISBN-13: 0817680985

DOWNLOAD EBOOK

Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB® programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and reference for graduate and advanced undergraduate students, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance.


Killer Cell Dynamics

Killer Cell Dynamics

Author: Dominik Wodarz

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 226

ISBN-13: 0387687335

DOWNLOAD EBOOK

This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.


An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling

Author: Edward A. Bender

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 273

ISBN-13: 0486137120

DOWNLOAD EBOOK

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.


Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention

Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention

Author: W. Y. Tan

Publisher: World Scientific

Published: 2005

Total Pages: 610

ISBN-13: 9812561390

DOWNLOAD EBOOK

- Only book on extensive, deterministic models, statistic models, stochastic models and state space models and statistical methods for HIV epidemic involving IV drug usage and HIV epidemic in homosexual populations. - Provides most recent biological insights into HIV pathogenesis and HIV kinetics at the cellular level, and illustrates how to build up mathematical models based on these biological insights. - Only publication that provides in-depth analysis of HAART treatment protocols and discusses possible improvements to the HAART protocol. The book also provides connection between pharmacokinetics with treatment in HIV-infected individuals.


Finite Frame Theory: A Complete Introduction to Overcompleteness

Finite Frame Theory: A Complete Introduction to Overcompleteness

Author: Kasso A. Okoudjou

Publisher: American Mathematical Soc.

Published: 2016-07-13

Total Pages: 266

ISBN-13: 1470420198

DOWNLOAD EBOOK

Frames are overcomplete sets of vectors that can be used to stably and faithfully decompose and reconstruct vectors in the underlying vector space. Frame theory stands at the intersection of many areas in mathematics such as functional and harmonic analysis, numerical analysis, matrix theory, numerical linear algebra, algebraic and differential geometry, probability, statistics, and convex geometry. At the same time its applications in engineering, medicine, computer science, and quantum computing are motivating new research problems in applied and pure mathematics. This volume is based on lectures delivered at the 2015 AMS Short Course “Finite Frame Theory: A Complete Introduction to Overcompleteness”, held January 8–9, 2015 in San Antonio, TX. Mostly written in a tutorial style, the seven chapters contained in this volume survey recent advances in the theory and applications of finite frames. In particular, it presents state-of-the-art results on foundational frame problems, and on the analysis and design of various frames, mostly motivated by specific applications. Carefully assembled, the volume quickly introduces the non-expert to the basic tools and techniques of frame theory. It then moves to develop many recent results in the area and presents some important applications. As such, the volume is designed for a diverse audience including researchers in applied and computational harmonic analysis, as well as engineers and graduate students.


3D Printing in Mathematics

3D Printing in Mathematics

Author: Maria Trnkova

Publisher: American Mathematical Society

Published: 2023-11-07

Total Pages: 242

ISBN-13: 1470469162

DOWNLOAD EBOOK

This volume is based on lectures delivered at the 2022 AMS Short Course “3D Printing: Challenges and Applications” held virtually from January 3–4, 2022. Access to 3D printing facilities is quickly becoming ubiquitous across college campuses. However, while equipment training is readily available, the process of taking a mathematical idea and making it into a printable model presents a big hurdle for most mathematicians. Additionally, there are still many open questions around what objects are possible to print, how to design algorithms for doing so, and what kinds of geometries have desired kinematic properties. This volume is focused on the process and applications of 3D printing for mathematical education, research, and visualization, alongside a discussion of the challenges and open mathematical problems that arise in the design and algorithmic aspects of 3D printing. The articles in this volume are focused on two main topics. The first is to make a bridge between mathematical ideas and 3D visualization. The second is to describe methods and techniques for including 3D printing in mathematical education at different levels— from pedagogy to research and from demonstrations to individual projects. We hope to establish the groundwork for engaged academic discourse on the intersections between mathematics, 3D printing and education.


Sum of Squares: Theory and Applications

Sum of Squares: Theory and Applications

Author: Pablo A. Parrilo

Publisher: American Mathematical Soc.

Published:

Total Pages: 142

ISBN-13: 1470450259

DOWNLOAD EBOOK

This volume is based on lectures delivered at the 2019 AMS Short Course “Sum of Squares: Theory and Applications”, held January 14–15, 2019, in Baltimore, Maryland. This book provides a concise state-of-the-art overview of the theory and applications of polynomials that are sums of squares. This is an exciting and timely topic, with rich connections to many areas of mathematics, including polynomial and semidefinite optimization, real and convex algebraic geometry, and theoretical computer science. The six chapters introduce and survey recent developments in this area; specific topics include the algebraic and geometric aspects of sums of squares and spectrahedra, lifted representations of convex sets, and the algorithmic and computational implications of viewing sums of squares as a meta algorithm. The book also showcases practical applications of the techniques across a variety of areas, including control theory, statistics, finance and machine learning.