This is an introduction to game theory and applications with an emphasis on self-discovery from the perspective of a mathematical modeller. The book deals in a unified manner with the central concepts of both classical and evolutionary game theory. The key ideas are illustrated throughout by a wide variety of well-chosen examples of both human and non-human behavior, including car pooling, price fixing, food sharing, sex allocation and competition for territories or oviposition sites. There are numerous exercises with solutions.
Game Theory: A Modeling Approach quickly moves readers through the fundamental ideas of the subject to enable them to engage in creative modeling projects based on game theoretic concepts. The authors match conclusions to real-world scenarios and applications. The text engages students in active learning, group work, in-class discussions and interactive simulations. Each chapter provides foundation pieces or adds more features to help readers build game theoretic models. The chapters include definitions, concepts and illustrative examples. The text will engage and challenge both undergraduate and graduate students. Features: Enables readers to apply game theorty to real-world scenarios Chapters can be used for core course materials or independent stuides Exercises, included at the end of the chapters, follow the order of the sections in the text Select answers and solutions are found at the end of the book Solutions manual for instructors is available from the authors
The definitive introduction to game theory This comprehensive textbook introduces readers to the principal ideas and applications of game theory, in a style that combines rigor with accessibility. Steven Tadelis begins with a concise description of rational decision making, and goes on to discuss strategic and extensive form games with complete information, Bayesian games, and extensive form games with imperfect information. He covers a host of topics, including multistage and repeated games, bargaining theory, auctions, rent-seeking games, mechanism design, signaling games, reputation building, and information transmission games. Unlike other books on game theory, this one begins with the idea of rationality and explores its implications for multiperson decision problems through concepts like dominated strategies and rationalizability. Only then does it present the subject of Nash equilibrium and its derivatives. Game Theory is the ideal textbook for advanced undergraduate and beginning graduate students. Throughout, concepts and methods are explained using real-world examples backed by precise analytic material. The book features many important applications to economics and political science, as well as numerous exercises that focus on how to formalize informal situations and then analyze them. Introduces the core ideas and applications of game theory Covers static and dynamic games, with complete and incomplete information Features a variety of examples, applications, and exercises Topics include repeated games, bargaining, auctions, signaling, reputation, and information transmission Ideal for advanced undergraduate and beginning graduate students Complete solutions available to teachers and selected solutions available to students
The essential textbook for learning game theory strategies Game Theory in Action is a textbook about using game theory across a range of real-life scenarios. From traffic accidents to the sex lives of lizards, Stephen Schecter and Herbert Gintis show students how game theory can be applied in diverse areas including animal behavior, political science, and economics. The book's examples and problems look at such fascinating topics as crime-control strategies, climate-change negotiations, and the power of the Oracle at Delphi. The text includes a substantial treatment of evolutionary game theory, where strategies are not chosen through rational analysis, but emerge by virtue of being successful. This is the side of game theory that is most relevant to biology; it also helps to explain how human societies evolve. Aimed at students who have studied basic calculus and some differential equations, Game Theory in Action is the perfect way to learn the concepts and practical tools of game theory. Aimed at students who have studied calculus and some differential equations Examples are drawn from diverse scenarios, ranging from traffic accidents to the sex lives of lizards A substantial treatment of evolutionary game theory Useful problem sets at the end of each chapter
It is impossible to understand modern economics without knowledge of the basic tools of gametheory and mechanism design. This book provides a graduate-level introduction to the economic modeling of strategic behavior. The goal is to teach Economics doctoral students the tools of game theory and mechanism design that all economists should know.
This modern, still relevant text is suitable for senior undergraduate and graduate students, teachers and professionals in mathematics, operational research, economics, sociology; and psychology, defence and strategic studies, and war games. Engagingly written with agreeable humor, the book can also be understood by non-mathematicians. It shows basic ideas of extensive form, pure and mixed strategies, the minimax theorem, non-cooperative and co-operative games, and a ''first class'' account of linear programming, theory and practice. The text is self-contained with comprehensive source references. Based on a series of lectures given by the author in the theory of games at Royal Holloway College, it gives unusually comprehensive but concise treatment of co-operative games, an original account of bargaining models, with a skilfully guided tour through the Shapely and Nash solutions for bimatrix games and a carefully illustrated account of finding the best threat strategies.
Covering the major topics of evolutionary game theory, Game-Theoretical Models in Biology presents both abstract and practical mathematical models of real biological situations. It discusses the static aspects of game theory in a mathematically rigorous way that is appealing to mathematicians. In addition, the authors explore many applications of game theory to biology, making the text useful to biologists as well. The book describes a wide range of topics in evolutionary games, including matrix games, replicator dynamics, the hawk-dove game, and the prisoner’s dilemma. It covers the evolutionarily stable strategy, a key concept in biological games, and offers in-depth details of the mathematical models. Most chapters illustrate how to use MATLAB® to solve various games. Important biological phenomena, such as the sex ratio of so many species being close to a half, the evolution of cooperative behavior, and the existence of adornments (for example, the peacock’s tail), have been explained using ideas underpinned by game theoretical modeling. Suitable for readers studying and working at the interface of mathematics and the life sciences, this book shows how evolutionary game theory is used in the modeling of these diverse biological phenomena.
This text emphasizes the ideas behind modern game theory rather than their mathematical expression, but defines all concepts precisely. It covers strategic, extensive and coalitional games and includes the topics of repeated games, bargaining theory and evolutionary equilibrium.
The study of strategic action (game theory) is moving from a formal science of rational behavior to an evolutionary tool kit for studying behavior in a broad array of social settings. In this problem-oriented introduction to the field, Herbert Gintis exposes students to the techniques and applications of game theory through a wealth of sophisticated and surprisingly fun-to-solve problems involving human (and even animal) behavior. Game Theory Evolving is innovative in several ways. First, it reflects game theory's expansion into such areas as cooperation in teams, networks, the evolution and diffusion of preferences, the connection between biology and economics, artificial life simulations, and experimental economics. Second, the book--recognizing that students learn by doing and that most game theory texts are weak on problems--is organized around problems, and introduces principles through practice. Finally, the quality of the problems is simply unsurpassed, and each chapter provides a study plan for instructors interested in teaching evolutionary game theory. Reflecting the growing consensus that in many important contexts outside of anonymous markets, human behavior is not well described by classical "rationality," Gintis shows students how to apply game theory to model how people behave in ways that reflect the special nature of human sociality and individuality. This book is perfect for upper undergraduate and graduate economics courses as well as a terrific introduction for ambitious do-it-yourselfers throughout the behavioral sciences.