An Introduction to CR Structures

An Introduction to CR Structures

Author: Howard Jacobowitz

Publisher: American Mathematical Soc.

Published: 1990

Total Pages: 249

ISBN-13: 0821815334

DOWNLOAD EBOOK

The geometry and analysis of CR manifolds is the subject of this expository work, which presents all the basic results on this topic, including results from the folklore of the subject.


CR Manifolds and the Tangential Cauchy Riemann Complex

CR Manifolds and the Tangential Cauchy Riemann Complex

Author: Al Boggess

Publisher: Routledge

Published: 2017-09-20

Total Pages: 383

ISBN-13: 1351457586

DOWNLOAD EBOOK

CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background material concerning CR manifolds, CR functions, the tangential Cauchy-Riemann Complex and the Levi form. The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations.


A New Approach to the Local Embedding Theorem of CR-Structures for $n\geq 4$ (The Local Solvability for the Operator $\overline \partial _b$ in the Abstract Sense)

A New Approach to the Local Embedding Theorem of CR-Structures for $n\geq 4$ (The Local Solvability for the Operator $\overline \partial _b$ in the Abstract Sense)

Author: Takao Akahori

Publisher: American Mathematical Soc.

Published: 1987

Total Pages: 278

ISBN-13: 0821824287

DOWNLOAD EBOOK

Kuranishi proved that any abstract strongly pseudo convex CR-structure of which real dimension [greater than or equal to] nine can be locally embeddable. In this paper, by introducing a new approach, we improve his result. Namely, we obtain that any abstract strongly pseudo convex CR-structure of which real dimension [greater than or equal to] seven can be locally embeddable.


CR-geometry and Overdetermined Systems

CR-geometry and Overdetermined Systems

Author: Takao Akahori

Publisher:

Published: 1997

Total Pages: 436

ISBN-13:

DOWNLOAD EBOOK

This volume consists of survey articles and research papers on the most recent developments of CR-geometry and overdetermined systems. Some of the papers are based on the lectures delivered at a conference of the same title. The volume contains notes from three lectures on the invariant theory of the Bergman kernel, and on the deformation of CR structures with applications. Other papers are recent contributions on important problems in complex geometry of differential geometric aspects of analysis, and many of them are related to CR geometry.


Differential Geometry and Analysis on CR Manifolds

Differential Geometry and Analysis on CR Manifolds

Author: Sorin Dragomir

Publisher: Springer Science & Business Media

Published: 2007-06-10

Total Pages: 499

ISBN-13: 0817644830

DOWNLOAD EBOOK

Presents many major differential geometric acheivements in the theory of CR manifolds for the first time in book form Explains how certain results from analysis are employed in CR geometry Many examples and explicitly worked-out proofs of main geometric results in the first section of the book making it suitable as a graduate main course or seminar textbook Provides unproved statements and comments inspiring further study


Real Methods in Complex and CR Geometry

Real Methods in Complex and CR Geometry

Author: Marco Abate

Publisher: Springer

Published: 2004-08-30

Total Pages: 224

ISBN-13: 3540444874

DOWNLOAD EBOOK

The geometry of real submanifolds in complex manifolds and the analysis of their mappings belong to the most advanced streams of contemporary Mathematics. In this area converge the techniques of various and sophisticated mathematical fields such as P.D.E.s, boundary value problems, induced equations, analytic discs in symplectic spaces, complex dynamics. For the variety of themes and the surprisingly good interplaying of different research tools, these problems attracted the attention of some among the best mathematicians of these latest two decades. They also entered as a refined content of an advanced education. In this sense the five lectures of this volume provide an excellent cultural background while giving very deep insights of current research activity.


Handbook of Pseudo-Riemannian Geometry and Supersymmetry

Handbook of Pseudo-Riemannian Geometry and Supersymmetry

Author: Vicente Cortés

Publisher: European Mathematical Society

Published: 2010

Total Pages: 972

ISBN-13: 9783037190791

DOWNLOAD EBOOK

The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.


Complex Analysis and CR Geometry

Complex Analysis and CR Geometry

Author: Giuseppe Zampieri

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 210

ISBN-13: 0821844423

DOWNLOAD EBOOK

Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the $\bar\partial$-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometryrequires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting tograduate students who wish to learn it.