An Introduction to Continuum Mechanics

An Introduction to Continuum Mechanics

Author: J. N. Reddy

Publisher: Cambridge University Press

Published: 2013-07-29

Total Pages: 479

ISBN-13: 1107025435

DOWNLOAD EBOOK

This best-selling textbook presents the concepts of continuum mechanics, and the second edition includes additional explanations, examples and exercises.


Introduction to Continuum Mechanics

Introduction to Continuum Mechanics

Author: David Rubin

Publisher: Newnes

Published: 2012-12-02

Total Pages: 571

ISBN-13: 0080983871

DOWNLOAD EBOOK

Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive equations for viscoelastic fluids, and finite deformation theory), this popular introduction to modern continuum mechanics has been fully revised to serve a dual purpose: for introductory courses in undergraduate engineering curricula, and for beginning graduate courses.


An Introduction to Continuum Mechanics

An Introduction to Continuum Mechanics

Author: Morton E. Gurtin

Publisher: Academic Press

Published: 1982-01-12

Total Pages: 279

ISBN-13: 0080918492

DOWNLOAD EBOOK

This book presents an introduction to the classical theories of continuum mechanics; in particular, to the theories of ideal, compressible, and viscous fluids, and to the linear and nonlinear theories of elasticity. These theories are important, not only because they are applicable to a majority of the problems in continuum mechanics arising in practice, but because they form a solid base upon which one can readily construct more complex theories of material behavior. Further, although attention is limited to the classical theories, the treatment is modern with a major emphasis on foundations and structure


Introduction to Continuum Mechanics for Engineers

Introduction to Continuum Mechanics for Engineers

Author: Ray M. Bowen

Publisher:

Published: 2009

Total Pages: 0

ISBN-13: 9780486474601

DOWNLOAD EBOOK

This self-contained graduate-level text introduces classical continuum models within a modern framework. Its numerous exercises illustrate the governing principles, linearizations, and other approximations that constitute classical continuum models. Starting with an overview of one-dimensional continuum mechanics, the text advances to examinations of the kinematics of motion, the governing equations of balance, and the entropy inequality for a continuum. The main portion of the book involves models of material behavior and presents complete formulations of various general continuum models. The final chapter contains an introductory discussion of materials with internal state variables. Two substantial appendixes cover all of the mathematical background necessary to understand the text as well as results of representation theorems. Suitable for independent study, this volume features 280 exercises and 170 references.


Continuum Mechanics

Continuum Mechanics

Author: Fridtjov Irgens

Publisher: Springer Science & Business Media

Published: 2008-01-10

Total Pages: 667

ISBN-13: 3540742980

DOWNLOAD EBOOK

This book presents an introduction into the entire science of Continuum Mechanics in three parts. The presentation is modern and comprehensive. Its introduction into tensors is very gentle. The book contains many examples and exercises, and is intended for scientists, practitioners and students of mechanics.


Continuum Mechanics

Continuum Mechanics

Author: A. J. M. Spencer

Publisher: Courier Corporation

Published: 2012-06-08

Total Pages: 194

ISBN-13: 0486139476

DOWNLOAD EBOOK

Undergraduate text offers an analysis of deformation and stress, covers laws of conservation of mass, momentum, and energy, and surveys the formulation of mechanical constitutive equations. 1992 edition.


Continuum Mechanics Through the Twentieth Century

Continuum Mechanics Through the Twentieth Century

Author: Gerard A Maugin

Publisher: Springer Science & Business Media

Published: 2013-04-08

Total Pages: 321

ISBN-13: 9400763530

DOWNLOAD EBOOK

This overview of the development of continuum mechanics throughout the twentieth century is unique and ambitious. Utilizing a historical perspective, it combines an exposition on the technical progress made in the field and a marked interest in the role played by remarkable individuals and scientific schools and institutions on a rapidly evolving social background. It underlines the newly raised technical questions and their answers, and the ongoing reflections on the bases of continuum mechanics associated, or in competition, with other branches of the physical sciences, including thermodynamics. The emphasis is placed on the development of a more realistic modeling of deformable solids and the exploitation of new mathematical tools. The book presents a balanced appraisal of advances made in various parts of the world. The author contributes his technical expertise, personal recollections, and international experience to this general overview, which is very informative albeit concise.


Introduction to Continuum Mechanics

Introduction to Continuum Mechanics

Author: Sudhakar Nair

Publisher: Cambridge University Press

Published: 2009-03-16

Total Pages: 253

ISBN-13: 0521875625

DOWNLOAD EBOOK

This textbook treats solids and fluids in a balanced manner, using thermodynamic restrictions on the relation between applied forces and material responses. This unified approach can be appreciated by engineers, physicists, and applied mathematicians with some background in engineering mechanics. It has many examples and about 150 exercises for students to practice. The higher mathematics needed for a complete understanding is provided in the early chapters. This subject is essential for engineers involved in experimental or numerical modeling of material behavior.


Continuum Mechanics

Continuum Mechanics

Author: Peter Chadwick

Publisher: Courier Corporation

Published: 1999-01-01

Total Pages: 200

ISBN-13: 9780486401805

DOWNLOAD EBOOK

Written in response to the dearth of practical and meaningful textbooks in the field of fundamental continuum mechanics, this comprehensive treatment offers students and instructors an immensely useful tool. Its 115 solved problems and exercises not only provide essential practice but also systematically advance the understanding of vector and tensor theory, basic kinematics, balance laws, field equations, jump conditions, and constitutive equations. Readers follow clear, formally precise steps through the central ideas of classical and modern continuum mechanics, expressed in a common, efficient notation that fosters quick comprehension and renders these concepts familiar when they reappear in other contexts. Completion of this brief course results in a unified basis for work in fluid dynamics and the mechanics of solid materials, a foundation of particular value to students of mathematics and physics, those studying continuum mechanics at an intermediate or advanced level, and postgraduate students in the applied sciences. "Should be excellent in its intended function as a problem book to accompany a lecture course." — Quarterly of Applied Math.


Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials

Author: Peter Haupt

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 666

ISBN-13: 3662047756

DOWNLOAD EBOOK

The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.