An Introduction to Catalan Numbers

An Introduction to Catalan Numbers

Author: Steven Roman

Publisher: Birkhäuser

Published: 2015-11-17

Total Pages: 127

ISBN-13: 3319221442

DOWNLOAD EBOOK

This textbook provides an introduction to the Catalan numbers and their remarkable properties, along with their various applications in combinatorics. Intended to be accessible to students new to the subject, the book begins with more elementary topics before progressing to more mathematically sophisticated topics. Each chapter focuses on a specific combinatorial object counted by these numbers, including paths, trees, tilings of a staircase, null sums in Zn+1, interval structures, partitions, permutations, semiorders, and more. Exercises are included at the end of book, along with hints and solutions, to help students obtain a better grasp of the material. The text is ideal for undergraduate students studying combinatorics, but will also appeal to anyone with a mathematical background who has an interest in learning about the Catalan numbers. “Roman does an admirable job of providing an introduction to Catalan numbers of a different nature from the previous ones. He has made an excellent choice of topics in order to convey the flavor of Catalan combinatorics. [Readers] will acquire a good feeling for why so many mathematicians are enthralled by the remarkable ubiquity and elegance of Catalan numbers.” - From the foreword by Richard Stanley


Fibonacci and Catalan Numbers

Fibonacci and Catalan Numbers

Author: Ralph Grimaldi

Publisher: John Wiley & Sons

Published: 2012-02-21

Total Pages: 380

ISBN-13: 1118159764

DOWNLOAD EBOOK

Discover the properties and real-world applications of the Fibonacci and the Catalan numbers With clear explanations and easy-to-follow examples, Fibonacci and Catalan Numbers: An Introduction offers a fascinating overview of these topics that is accessible to a broad range of readers. Beginning with a historical development of each topic, the book guides readers through the essential properties of the Fibonacci numbers, offering many introductory-level examples. The author explains the relationship of the Fibonacci numbers to compositions and palindromes, tilings, graph theory, and the Lucas numbers. The book proceeds to explore the Catalan numbers, with the author drawing from their history to provide a solid foundation of the underlying properties. The relationship of the Catalan numbers to various concepts is then presented in examples dealing with partial orders, total orders, topological sorting, graph theory, rooted-ordered binary trees, pattern avoidance, and the Narayana numbers. The book features various aids and insights that allow readers to develop a complete understanding of the presented topics, including: Real-world examples that demonstrate the application of the Fibonacci and the Catalan numbers to such fields as sports, botany, chemistry, physics, and computer science More than 300 exercises that enable readers to explore many of the presented examples in greater depth Illustrations that clarify and simplify the concepts Fibonacci and Catalan Numbers is an excellent book for courses on discrete mathematics, combinatorics, and number theory, especially at the undergraduate level. Undergraduates will find the book to be an excellent source for independent study, as well as a source of topics for research. Further, a great deal of the material can also be used for enrichment in high school courses.


Catalan Numbers

Catalan Numbers

Author: Richard P. Stanley

Publisher: Cambridge University Press

Published: 2015-03-30

Total Pages: 225

ISBN-13: 1107075092

DOWNLOAD EBOOK

Catalan numbers are probably the most ubiquitous sequence of numbers in mathematics. This book gives for the first time a comprehensive collection of their properties and applications to combinatorics, algebra, analysis, number theory, probability theory, geometry, topology, and other areas. Following an introduction to the basic properties of Catalan numbers, the book presents 214 different kinds of objects counted by them in the form of exercises with solutions. The reader can try solving the exercises or simply browse through them. Some 68 additional exercises with prescribed difficulty levels present various properties of Catalan numbers and related numbers, such as Fuss-Catalan numbers, Motzkin numbers, Schröder numbers, Narayana numbers, super Catalan numbers, q-Catalan numbers and (q,t)-Catalan numbers. The book ends with a history of Catalan numbers by Igor Pak and a glossary of key terms. Whether your interest in mathematics is recreation or research, you will find plenty of fascinating and stimulating facts here.


Fibonacci and Lucas Numbers with Applications

Fibonacci and Lucas Numbers with Applications

Author: Thomas Koshy

Publisher: John Wiley & Sons

Published: 2011-10-24

Total Pages: 676

ISBN-13: 1118031318

DOWNLOAD EBOOK

The first comprehensive survey of mathematics' most fascinatingnumber sequences Fibonacci and Lucas numbers have intrigued amateur and professionalmathematicians for centuries. This volume represents the firstattempt to compile a definitive history and authoritative analysisof these famous integer sequences, complete with a wealth ofexciting applications, enlightening examples, and fun exercisesthat offer numerous opportunities for exploration andexperimentation. The author has assembled a myriad of fascinating properties of bothFibonacci and Lucas numbers-as developed by a wide range ofsources-and catalogued their applications in a multitude of widelyvaried disciplines such as art, stock market investing,engineering, and neurophysiology. Most of the engaging anddelightful material here is easily accessible to college and evenhigh school students, though advanced material is included tochallenge more sophisticated Fibonacci enthusiasts. A historicalsurvey of the development of Fibonacci and Lucas numbers,biographical sketches of intriguing personalities involved indeveloping the subject, and illustrative examples round out thisthorough and amusing survey. Most chapters conclude with numericand theoretical exercises that do not rely on long and tediousproofs of theorems. Highlights include: * Balanced blend of theory and real-world applications * Excellent reference material for student reports andprojects * User-friendly, informal, and entertaining writing style * Historical interjections and short biographies that add a richerperspective to the topic * Reference sections providing important symbols, problemsolutions, and fundamental properties from the theory of numbersand matrices Fibonacci and Lucas Numbers with Applications providesmathematicians with a wealth of reference material in oneconvenient volume and presents an in-depth and entertainingresource for enthusiasts at every level and from any background.


The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics

Author: James Haglund

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 178

ISBN-13: 0821844113

DOWNLOAD EBOOK

This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.


How to Count

How to Count

Author: R.B.J.T. Allenby

Publisher: CRC Press

Published: 2011-07-01

Total Pages: 440

ISBN-13: 1420082612

DOWNLOAD EBOOK

Emphasizes a Problem Solving Approach A first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics. New to the Second Edition This second edition incorporates 50 percent more material. It includes seven new chapters that cover occupancy problems, Stirling and Catalan numbers, graph theory, trees, Dirichlet’s pigeonhole principle, Ramsey theory, and rook polynomials. This edition also contains more than 450 exercises. Ideal for both classroom teaching and self-study, this text requires only a modest amount of mathematical background. In an engaging way, it covers many combinatorial tools, such as the inclusion-exclusion principle, generating functions, recurrence relations, and Pólya’s counting theorem.


Catalan's Conjecture

Catalan's Conjecture

Author: René Schoof

Publisher: Springer Science & Business Media

Published: 2010-07-08

Total Pages: 125

ISBN-13: 1848001851

DOWNLOAD EBOOK

Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it. Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further. Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem.


Catalan Numbers with Applications

Catalan Numbers with Applications

Author: Thomas Koshy

Publisher: OUP USA

Published: 2009

Total Pages: 439

ISBN-13: 019533454X

DOWNLOAD EBOOK

This book presents a clear and comprehensive introduction to one of the truly fascinating topics in mathematics: Catalan numbers. They crop up in chess, computer programming and even train tracks. In addition to lucid descriptions of the mathematics and history behind Catalan numbers, Koshy includes short biographies of the prominent mathematicians who have worked with the numbers.


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Enumerative Combinatorics: Volume 1

Enumerative Combinatorics: Volume 1

Author: Richard P. Stanley

Publisher: Cambridge University Press

Published: 2012

Total Pages: 641

ISBN-13: 1107015421

DOWNLOAD EBOOK

Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of Volume 1 includes ten new sections and more than 300 new exercises, most with solutions, reflecting numerous new developments since the publication of the first edition in 1986. The author brings the coverage up to date and includes a wide variety of additional applications and examples, as well as updated and expanded chapter bibliographies. Many of the less difficult new exercises have no solutions so that they can more easily be assigned to students. The material on P-partitions has been rearranged and generalized; the treatment of permutation statistics has been greatly enlarged; and there are also new sections on q-analogues of permutations, hyperplane arrangements, the cd-index, promotion and evacuation and differential posets.