Part of an ongoing series of manuals covering the range of applications of remotely sensed imagery, Volume 4 addresses the use of this technology in natural resource management and environmental monitoring. Comprehensive, authoritative, and up-to-date, it covers terrestrial ecosystems, aquatic ecosystems, and agriculture ecosystems, as well as future directions in technology and research.
In an age of unprecedented proliferation of data from disparate sources the urgency is to create efficient methodologies that can optimise data combinations and at the same time solve increasingly complex application problems. Integration of GIS and Remote Sensing explores the tremendous potential that lies along the interface between GIS and remote sensing for activating interoperable databases and instigating information interchange. It concentrates on the rigorous and meticulous aspects of analytical data matching and thematic compatibility - the true roots of all branches of GIS/remote sensing applications. However closer harmonization is tempered by numerous technical and institutional issues, including scale incompatibility, measurement disparities, and the inescapable notion that data from GIS and remote sensing essentially represent diametrically opposing conceptual views of reality. The first part of the book defines and characterises GIS and remote sensing and presents the reader with an awareness of the many scale, taxonomical and analytical problems when attempting integration. The second part of the book moves on to demonstrate the benefits and costs of integration across a number of human and environmental applications. This book is an invaluable reference for students and professionals dealing not only with GIS and remote sensing, but also computer science, civil engineering, environmental science and urban planning within the academic, governmental and commercial/business sectors.
Advanced Remote Sensing is an application-based reference that provides a single source of mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors such as RADAR and LIDAR. Scientists in a number of different fields including geography, geology, atmospheric science, environmental science, planetary science and ecology will have access to critically-important data extraction techniques and their virtually unlimited applications. While rigorous enough for the most experienced of scientists, the techniques are well designed and integrated, making the book's content intuitive, clearly presented, and practical in its implementation. - Comprehensive overview of various practical methods and algorithms - Detailed description of the principles and procedures of the state-of-the-art algorithms - Real-world case studies open several chapters - More than 500 full-color figures and tables - Edited by top remote sensing experts with contributions from authors across the geosciences
′A magnificent achievement. A who′s who of contemporary remote sensing have produced an engaging, wide-ranging and scholarly review of the field in just one volume′ - Professor Paul Curran, Vice-Chancellor, Bournemouth University Remote Sensing acquires and interprets small or large-scale data about the Earth from a distance. Using a wide range of spatial, spectral, temporal, and radiometric scales Remote Sensing is a large and diverse field for which this Handbook will be the key research reference. Organized in four key sections: • Interactions of Electromagnetic Radiation with the Terrestrial Environment: chapters on Visible, Near-IR and Shortwave IR; Middle IR (3-5 micrometers); Thermal IR ; Microwave • Digital sensors and Image Characteristics: chapters on Sensor Technology; Coarse Spatial Resolution Optical Sensors ; Medium Spatial Resolution Optical Sensors; Fine Spatial Resolution Optical Sensors; Video Imaging and Multispectral Digital Photography; Hyperspectral Sensors; Radar and Passive Microwave Sensors; Lidar • Remote Sensing Analysis - Design and Implementation: chapters on Image Pre-Processing; Ground Data Collection; Integration with GIS; Quantitative Models in Remote Sensing; Validation and accuracy assessment; • Remote Sensing Analysis - Applications: LITHOSPHERIC SCIENCES: chapters on Topography; Geology; Soils; PLANT SCIENCES: Vegetation; Agriculture; HYDROSPHERIC and CRYSOPHERIC SCIENCES: Hydrosphere: Fresh and Ocean Water; Cryosphere; GLOBAL CHANGE AND HUMAN ENVIRONMENTS: Earth Systems; Human Environments & Links to the Social Sciences; Real Time Monitoring Systems and Disaster Management; Land Cover Change Illustrated throughout, an essential resource for the analysis of remotely sensed data, the SAGE Handbook of Remote Sensing provides researchers with a definitive statement of the core concepts and methodologies in the discipline.
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
First published in 1918, William Strunk Jr.'s The Elements of Style is a guide to writing in American English. The boolk outlines eight "elementary rules of usage", ten "elementary principles of composition", "a few matters of form", a list of 49 "words and expressions commonly misused", and a list of 57 "words often misspelled". A later edition, enhanced by E B White, was named by Time magazine in 2011 as one of the 100 best and most influential books written in English since 1923.
Integrating Scale in Remote Sensing and GIS serves as the most comprehensive documentation of the scientific and methodological advances that have taken place in integrating scale and remote sensing data. This work addresses the invariants of scale, the ability to change scale, measures of the impact of scale, scale as a parameter in process models, and the implementation of multiscale approaches as methods and techniques for integrating multiple kinds of remote sensing data collected at varying spatial, temporal, and radiometric scales. Researchers, instructors, and students alike will benefit from a guide that has been pragmatically divided into four thematic groups: scale issues and multiple scaling; physical scale as applied to natural resources; urban scale; and human health/social scale. Teeming with insights that elucidate the significance of scale as a foundation for geographic analysis, this book is a vital resource to those seriously involved in the field of GIScience.