Protein-Solvent Interactions

Protein-Solvent Interactions

Author: Roger Gregory

Publisher: CRC Press

Published: 2024-11-01

Total Pages: 596

ISBN-13: 1040282512

DOWNLOAD EBOOK

This work covers advances in the interactions of proteins with their solvent environment and provides fundamental physical information useful for the application of proteins in biotechnology and industrial processes. It discusses in detail structure, dynamic and thermodynamic aspects of protein hydration, as well as proteins in aqueous and organic solvents as they relate to protein function, stability and folding.


Protein Simulations

Protein Simulations

Author: Valerie Daggett

Publisher: Elsevier

Published: 2003-11-26

Total Pages: 477

ISBN-13: 0080493785

DOWNLOAD EBOOK

Protein Simulation focuses on predicting how protein will act in vivo. These studies use computer analysis, computer modeling, and statistical probability to predict protein function.* Force Fields* Ligand Binding* Protein Membrane Simulation* Enzyme Dynamics* Protein Folding and unfolding simulations


Coarse-Graining of Condensed Phase and Biomolecular Systems

Coarse-Graining of Condensed Phase and Biomolecular Systems

Author: Gregory A. Voth

Publisher: CRC Press

Published: 2008-09-22

Total Pages: 492

ISBN-13: 1420059564

DOWNLOAD EBOOK

Exploring recent developments in the field, Coarse-Graining of Condensed Phase and Biomolecular Systems examines systematic ways of constructing coarse-grained representations for complex systems. It explains how this approach can be used in the simulation and modeling of condensed phase and biomolecular systems. Assembling some of the most influential, world-renowned researchers in the field, this book covers the latest developments in the coarse-grained molecular dynamics simulation and modeling of condensed phase and biomolecular systems. Each chapter focuses on specific examples of evolving coarse-graining methodologies and presents results for a variety of complex systems. The contributors discuss the minimalist, inversion, and multiscale approaches to coarse-graining, along with the emerging challenges of coarse-graining. They also connect atomic-level information with new coarse-grained representations of complex systems, such as lipid bilayers, proteins, peptides, and DNA.


Biomolecular Simulations in Structure-Based Drug Discovery

Biomolecular Simulations in Structure-Based Drug Discovery

Author: Francesco L. Gervasio

Publisher: John Wiley & Sons

Published: 2019-04-29

Total Pages: 368

ISBN-13: 3527342656

DOWNLOAD EBOOK

A guide to applying the power of modern simulation tools to better drug design Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data. Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that: -Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists -Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development -Offers numerous illustrative case studies from a wide-range of therapeutic fields -Presents an application-oriented reference that is ideal for those working in the various fields Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.


Hybrid Biomolecular Modeling

Hybrid Biomolecular Modeling

Author: Slavica Jonic

Publisher: Frontiers Media SA

Published: 2019-01-24

Total Pages: 128

ISBN-13: 2889456994

DOWNLOAD EBOOK

Models of biomolecular structure and dynamics are often obtained by combining simulation or prediction approaches (e.g., comparative modeling, Molecular Dynamics (MD) simulations, Normal Mode Analysis (NMA), etc.) with experimental approaches (e.g., Nuclear Magnetic Resonance (NMR), X-ray crystallography, Small-Angle X-ray Scattering (SAXS), Electron Microscopy (EM), etc.). Such hybrid modeling extends the capabilities of experimental techniques, by enriching structural information and facilitating dynamics studies of biomolecules. This eBook contains articles on methodological developments, applications, and challenges of hybrid biomolecular modeling that have been collected in the framework of the Frontiers Research Topic entitled “Hybrid Biomolecular Modeling”.


Modeling Solvent Environments

Modeling Solvent Environments

Author: Michael Feig

Publisher: John Wiley & Sons

Published: 2009-12-09

Total Pages: 334

ISBN-13: 3527629262

DOWNLOAD EBOOK

A comprehensive view of the current methods for modeling solvent environments with contributions from the leading researchers in the field. Throughout, the emphasis is placed on the application of such models in simulation studies of biological processes, although the coverage is sufficiently broad to extend to other systems as well. As such, this monograph treats a full range of topics, from statistical mechanics-based approaches to popular mean field formalisms, coarse-grained solvent models, more established explicit, fully atomic solvent models, and recent advances in applying ab initio methods for modeling solvent properties.


Computational Modeling And Simulations Of Biomolecular Systems

Computational Modeling And Simulations Of Biomolecular Systems

Author: Benoit Roux

Publisher: World Scientific

Published: 2021-08-23

Total Pages: 209

ISBN-13: 9811232776

DOWNLOAD EBOOK

This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).


Chemical Theory and Multiscale Simulation in Biomolecules

Chemical Theory and Multiscale Simulation in Biomolecules

Author: Guohui Li

Publisher: Elsevier

Published: 2024-03-29

Total Pages: 399

ISBN-13: 0323959180

DOWNLOAD EBOOK

Chemical Theory and Multiscale Simulation in Biomolecules: From Principles to Case Studies helps readers understand what simulation is, what information modeling of biomolecules can provide, and how to compare this information with experiments. Beginning with an introduction to computational theory for modeling, the book goes on to describe how to control the conditions of modeling systems and possible strategies for time-cost savings in computation. Part Two further outlines key methods, with step-by-step guidance supporting readers in studying and practicing simulation processes. Part Three then shows how these theories are controlled and applied in practice, through examples and case studies on varied applications. This book is a practical guide for new learners, supporting them in learning and applying molecular modeling in practice, whilst also providing more experienced readers with the knowledge needed to gain a deep understanding of the theoretical background behind key methods. - Presents computational theory alongside case studies to help readers understand the use of simulation in practice - Includes extensive examples of different types of simulation methods and approaches to result analysis - Provides an overview of the current academic frontier and research challenges, encouraging creativity and directing attention to current problems


New Algorithms for Macromolecular Simulation

New Algorithms for Macromolecular Simulation

Author: Benedict Leimkuhler

Publisher: Springer Science & Business Media

Published: 2006-03-22

Total Pages: 364

ISBN-13: 3540316183

DOWNLOAD EBOOK

Molecular simulation is a widely used tool in biology, chemistry, physics and engineering. This book contains a collection of articles by leading researchers who are developing new methods for molecular modelling and simulation. Topics addressed here include: multiscale formulations for biomolecular modelling, such as quantum-classical methods and advanced solvation techniques; protein folding methods and schemes for sampling complex landscapes; membrane simulations; free energy calculation; and techniques for improving ergodicity. The book is meant to be useful for practitioners in the simulation community and for those new to molecular simulation who require a broad introduction to the state of the art.


Protein Folding Dynamics and Stability

Protein Folding Dynamics and Stability

Author: Prakash Saudagar

Publisher: Springer Nature

Published: 2023-05-27

Total Pages: 287

ISBN-13: 9819920795

DOWNLOAD EBOOK

This book describes recent important advancements in protein folding dynamics and stability research, as well as explaining fundamentals and examining potential methodological approaches in protein science. In vitro, in silico, and in vivo method based research of how the stability and folding of proteins help regulate the cellular dynamics and impact cell function that are crucial in explaining various physiological and pathological processes. This book offers a comprehensive coverage on various techniques and related recent developments in the experimental and computational methods of protein folding, dynamics, and stability studies. The book is also structured in such a way as to summarize the latest developments in the fiddle and key concepts to ensure that readers can understand advanced concepts as well as the fundamental big picture. And most of all, fresh insights are provided into the convergence of protein science and technology. Protein Folding Dynamics and Stability is an ideal guide to the field that will be of value for all levels of researchers and advanced graduate students with training in biochemical laboratory research.