An Experimental Investigation of the Flow Structure of the Turbulent Boundary Layer

An Experimental Investigation of the Flow Structure of the Turbulent Boundary Layer

Author: Peter W. Runstadler

Publisher:

Published: 1963

Total Pages: 326

ISBN-13:

DOWNLOAD EBOOK

A combination of visual and quantitative measurements is presented, providing a physical picture of the turbulent boundary layer flow structure on a flat plate. The flow structure is shown to consist of three zones, each zone has a one to one correspondence to the well known regions of the u+, y+ mean velocity profile. A wall layer region is shown to exist below y+ = 10. An apparently fully turbulent region exists corresponding to the logarithmic ''law of the wall'' and the ''buffer'' region. An intermittent zone appears to agree closely with the ''wake'' deviation region. An entirely new result of the investigation is the delineation of the structure of the wall layer region. This region is shown to contain a relatively regular structure of low and high velocity fluid streaks alternating in the span direction, together with the ejection of low momentum fluid into the outer flow. Correlations are given for the rate of ejection and the streak spacing. A qualitative description of other features of the wall layer region and the character of the remainder of the boundary layer flow structure is presented. (Author).


Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions

Author: Holger Babinsky

Publisher: Cambridge University Press

Published: 2011-09-12

Total Pages: 481

ISBN-13: 1139498649

DOWNLOAD EBOOK

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.


Particle Image Velocimetry

Particle Image Velocimetry

Author: Markus Raffel

Publisher: Springer Science & Business Media

Published: 2007-08-09

Total Pages: 460

ISBN-13: 3540723072

DOWNLOAD EBOOK

This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What’s more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.


Particle Image Velocimetry

Particle Image Velocimetry

Author: Ronald J. Adrian

Publisher: Cambridge University Press

Published: 2011

Total Pages: 585

ISBN-13: 0521440084

DOWNLOAD EBOOK

Particle image velocimetry, or PIV, refers to a class of methods used in experimental fluid mechanics to determine instantaneous fields of the vector velocity by measuring the displacements of numerous fine particles that accurately follow the motion of the fluid. Although the concept of measuring particle displacements is simple in essence, the factors that need to be addressed to design and implement PIV systems that achieve reliable, accurate, and fast measurements and to interpret the results are surprisingly numerous. The aim of this book is to analyze and explain them comprehensively.


Self-sustaining Mechanisms of Wall Turbulence

Self-sustaining Mechanisms of Wall Turbulence

Author: Ronald Lee Panton

Publisher: Computational Mechanics

Published: 1997

Total Pages: 448

ISBN-13:

DOWNLOAD EBOOK

Why is wall turbulence self-sustaining? In this book well-regarded researchers not only discuss what they know and believe, but also speculate on ideas that still require numerical or experimental testing and verification. An initial brief history of boundary layer structure research is followed by chapters on experimental information and specific topics within the subject. There are then sections on computational aspects.


Analysis of Turbulent Boundary Layers

Analysis of Turbulent Boundary Layers

Author: Tuncer Cebeci

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 423

ISBN-13: 0323151051

DOWNLOAD EBOOK

Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculating two-dimensional and axisymmetric laminar and turbulent boundary layers. This book will be useful to readers who have advanced knowledge in fluid mechanics, especially to engineers who study the important problems of design.


Twenty-Third Symposium on Naval Hydrodynamics

Twenty-Third Symposium on Naval Hydrodynamics

Author: National Research Council

Publisher: National Academies Press

Published: 2002-01-01

Total Pages: 1024

ISBN-13: 0309254671

DOWNLOAD EBOOK

"Vive la Revolution!" was the theme of the Twenty-Third Symposium on Naval Hydrodynamics held in Val de Reuil, France, from September 17-22, 2000 as more than 140 experts in ship design, construction, and operation came together to exchange naval research developments. The forum encouraged both formal and informal discussion of presented papers, and the occasion provides an opportunity for direct communication between international peers. This book includes sixty-three papers presented at the symposium which was organized jointly by the Office of Naval Research, the National Research Council (Naval Studies Board), and the Bassin d'Essais des Carènes. This book includes the ten topical areas discussed at the symposium: wave-induced motions and loads, hydrodynamics in ship design, propulsor hydrodynamics and hydroacoustics, CFD validation, viscous ship hydrodynamics, cavitation and bubbly flow, wave hydrodynamics, wake dynamics, shallow water hydrodynamics, and fluid dynamics in the naval context.


Perturbation Methods in Applied Mathematics

Perturbation Methods in Applied Mathematics

Author: J. Kevorkian

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 569

ISBN-13: 1475742134

DOWNLOAD EBOOK

This book is a revised and updated version, including a substantial portion of new material, of J. D. Cole's text Perturbation Methods in Applied Mathe matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate level course on the subject. The applied mathematician, attempting to understand or solve a physical problem, very often uses a perturbation procedure. In doing this, he usually draws on a backlog of experience gained from the solution of similar examples rather than on some general theory of perturbations. The aim of this book is to survey these perturbation methods, especially in connection with differ ential equations, in order to illustrate certain general features common to many examples. The basic ideas, however, are also applicable to integral equations, integrodifferential equations, and even to_difference equations. In essence, a perturbation procedure consists of constructing the solution for a problem involving a small parameter B, either in the differential equation or the boundary conditions or both, when the solution for the limiting case B = 0 is known. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of B.


The Structure of Turbulent Shear Flow

The Structure of Turbulent Shear Flow

Author: A. A. R. Townsend

Publisher: Cambridge University Press

Published: 1976

Total Pages: 450

ISBN-13: 9780521298193

DOWNLOAD EBOOK

Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.