An Efficient Image Denoising Approach Based on Dictionary Learning

An Efficient Image Denoising Approach Based on Dictionary Learning

Author: Mohammadreza Karimipoor

Publisher: Infinite Study

Published:

Total Pages: 7

ISBN-13:

DOWNLOAD EBOOK

In this paper, a denoising method based on dictionary learning has been proposed. With the increasing use of digital images, the methods that can remove noise based on image content and not restrictedly based on statistical properties has been widely extended. The major weakness of dictionary learning methods is that all of these methods require a long training process and a very large storage memory for storing features extracted from the training images. In the proposed method, using the concept of sparse matrix and similarities between samples extracted of similar images and adaptive filters the training process of dictionary based on ideal images have been simplified. Finally Images are checked based on its content by implicit optimization of memory usage and image noise will be removed with a minimum loss of stored samples in existing dictionary. At the end, the proposed method is implemented and results are shown its capabilities in comparison with other methods.


Sparse and Redundant Representations

Sparse and Redundant Representations

Author: Michael Elad

Publisher: Springer Science & Business Media

Published: 2010-08-12

Total Pages: 376

ISBN-13: 1441970118

DOWNLOAD EBOOK

A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.


Dictionary Learning for Scalable Sparse Image Representation

Dictionary Learning for Scalable Sparse Image Representation

Author: Bojana Begovic

Publisher:

Published: 2016

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Modern era of signal processing has developed many technical tools for recording and processing large and growing amount of data together with algorithms specialised for data analysis. This gives rise to new challenges in terms of data processing and modelling data representation. Fields ranging from experimental sciences, astronomy, computer vision,neuroscience mobile networks etc., are all in constant search for scalable and efficient data processing tools which would enable more effective analysis of continuous video streams containing millions of pixels. Therefore, the question of digital signal representation is still of high importance, despite the fact that it has been the topic of a significant amount of work in the past. Moreover, developing new data processing methods also affects the quality of everyday life, where devices such as CCD sensors from digital cameras or cell phones are intensively used for entertainment purposes. Specifically, one of the novel processing tools is signal sparse coding which represents signals as linear combinations of a few representational basis vectors i.e., atoms given an overcomplete dictionary. Applications that employ sparse representation are many such as denoising, compression, and regularisation in inverse problems, feature extraction, and more. In this thesis we introduce and study a particular signal representation denoted as the scalable sparse coding. It is based on a novel design for the dictionary learning algorithm, which has proven to be effective for scalable sparse representation of many modalities such as high motion video sequences, natural and solar images. The proposed algorithm is built upon the foundation of the K-SVD framework originally designed to learn non-scalable dictionaries for natural images. The scalable dictionary learning design is mainly motivated by the main perception characteristics of the Human Visual System (HVS) mechanism. Specifically, its core structure relies on the exploitation of the spatial high-frequency image components and contrast variations in order to achieve visual scene objects identification at all scalable levels. The implementation of HVS properties is carried out by introducing a semi-random Morphological Component Analysis (MCA) based initialisation of the scalable dictionary and the regularisation of its atom's update mechanism. Subsequently, this enables scalable sparse image reconstruction. In general, dictionary learning for sparse representations leads to state-of-the-art image restoration results for several different problems in the field of image processing. Experiments in this thesis show that these are equally achievable by accommodating all dictionary elements to tailor the scalable data representation and reconstruction, hence modelling data that admit sparse representation in a novel manner. Furthermore, achieved results demonstrateand validate the practicality of the proposed scheme making it a promising candidate for many practical applications involving both time scalable display, denoising and scalable compressive sensing (CS). Performed simulations include scalable sparse recovery for representation of static and dynamic data changing over time such as video sequences and natural images. Lastly, we contribute novel approaches for scalable denoising and contrast enhancement (CE), applied on solar images corrupted with pixel-dependent Poisson and zero-mean additive white Gaussian noise. Given that solar data contain noise introduced by charge-coupled devices within the on-board acquisition system these artefacts, prior to image analysis, have to be removed. Thus, novel image denoising and contrast enhancement methods are necessary for solar preprocessing.


Denoising of Photographic Images and Video

Denoising of Photographic Images and Video

Author: Marcelo Bertalmío

Publisher: Springer

Published: 2018-09-10

Total Pages: 339

ISBN-13: 3319960296

DOWNLOAD EBOOK

This unique text/reference presents a detailed review of noise removal for photographs and video. An international selection of expert contributors provide their insights into the fundamental challenges that remain in the field of denoising, examining how to properly model noise in real scenarios, how to tailor denoising algorithms to these models, and how to evaluate the results in a way that is consistent with perceived image quality. The book offers comprehensive coverage from problem formulation to the evaluation of denoising methods, from historical perspectives to state-of-the-art algorithms, and from fast real-time techniques that can be implemented in-camera to powerful and computationally intensive methods for off-line processing. Topics and features: describes the basic methods for the analysis of signal-dependent and correlated noise, and the key concepts underlying sparsity-based image denoising algorithms; reviews the most successful variational approaches for image reconstruction, and introduces convolutional neural network-based denoising methods; provides an overview of the use of Gaussian priors for patch-based image denoising, and examines the potential of internal denoising; discusses selection and estimation strategies for patch-based video denoising, and explores how noise enters the imaging pipeline; surveys the properties of real camera noise, and outlines a fast approximation of nonlocal means filtering; proposes routes to improving denoising results via indirectly denoising a transform of the image, considering the right noise model and taking into account the perceived quality of the outputs. This concise and clearly written volume will be of great value to researchers and professionals working in image processing and computer vision. The book will also serve as an accessible reference for advanced undergraduate and graduate students in computer science, applied mathematics, and related fields. "The relentless quest for higher image resolution, greater ISO sensitivity, faster frame rates and smaller imaging sensors in digital imaging and videography has demanded unprecedented innovation and improvement in noise reduction technologies. This book provides a comprehensive treatment of all aspects of image noise including noise modelling, state of the art noise reduction technologies and visual perception and quantitative evaluation of noise.” Geoff Woolfe, Former President of The Society for Imaging Science and Technology. "This book on denoising of photographic images and video is the most comprehensive and up-to-date account of this deep and classic problem of image processing. The progress on its solution is being spectacular. This volume therefore is a must read for all engineers and researchers concerned with image and video quality." Jean-Michel Morel, Professor at Ecole Normale Supérieure de Cachan, France.


Learning Approaches in Signal Processing

Learning Approaches in Signal Processing

Author: Francis Ring

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 461

ISBN-13: 0429590326

DOWNLOAD EBOOK

Coupled with machine learning, the use of signal processing techniques for big data analysis, Internet of things, smart cities, security, and bio-informatics applications has witnessed explosive growth. This has been made possible via fast algorithms on data, speech, image, and video processing with advanced GPU technology. This book presents an up-to-date tutorial and overview on learning technologies such as random forests, sparsity, and low-rank matrix estimation and cutting-edge visual/signal processing techniques, including face recognition, Kalman filtering, and multirate DSP. It discusses the applications that make use of deep learning, convolutional neural networks, random forests, etc. The applications include super-resolution imaging, fringe projection profilometry, human activities detection/capture, gesture recognition, spoken language processing, cooperative networks, bioinformatics, DNA, and healthcare.


Dictionary Learning in Visual Computing

Dictionary Learning in Visual Computing

Author: Qiang Zhang

Publisher: Morgan & Claypool Publishers

Published: 2015-05-01

Total Pages: 153

ISBN-13: 1627057781

DOWNLOAD EBOOK

The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.


Computer Vision – ECCV 2022 Workshops

Computer Vision – ECCV 2022 Workshops

Author: Leonid Karlinsky

Publisher: Springer Nature

Published: 2023-02-15

Total Pages: 789

ISBN-13: 303125063X

DOWNLOAD EBOOK

The 8-volume set, comprising the LNCS books 13801 until 13809, constitutes the refereed proceedings of 38 out of the 60 workshops held at the 17th European Conference on Computer Vision, ECCV 2022. The conference took place in Tel Aviv, Israel, during October 23-27, 2022; the workshops were held hybrid or online. The 367 full papers included in this volume set were carefully reviewed and selected for inclusion in the ECCV 2022 workshop proceedings. They were organized in individual parts as follows: Part I: W01 - AI for Space; W02 - Vision for Art; W03 - Adversarial Robustness in the Real World; W04 - Autonomous Vehicle Vision Part II: W05 - Learning With Limited and Imperfect Data; W06 - Advances in Image Manipulation; Part III: W07 - Medical Computer Vision; W08 - Computer Vision for Metaverse; W09 - Self-Supervised Learning: What Is Next?; Part IV: W10 - Self-Supervised Learning for Next-Generation Industry-Level Autonomous Driving; W11 - ISIC Skin Image Analysis; W12 - Cross-Modal Human-Robot Interaction; W13 - Text in Everything; W14 - BioImage Computing; W15 - Visual Object-Oriented Learning Meets Interaction: Discovery, Representations, and Applications; W16 - AI for Creative Video Editing and Understanding; W17 - Visual Inductive Priors for Data-Efficient Deep Learning; W18 - Mobile Intelligent Photography and Imaging; Part V: W19 - People Analysis: From Face, Body and Fashion to 3D Virtual Avatars; W20 - Safe Artificial Intelligence for Automated Driving; W21 - Real-World Surveillance: Applications and Challenges; W22 - Affective Behavior Analysis In-the-Wild; Part VI: W23 - Visual Perception for Navigation in Human Environments: The JackRabbot Human Body Pose Dataset and Benchmark; W24 - Distributed Smart Cameras; W25 - Causality in Vision; W26 - In-Vehicle Sensing and Monitorization; W27 - Assistive Computer Vision and Robotics; W28 - Computational Aspects of Deep Learning; Part VII: W29 - Computer Vision for Civil and Infrastructure Engineering; W30 - AI-Enabled Medical Image Analysis: Digital Pathology and Radiology/COVID19; W31 - Compositional and Multimodal Perception; Part VIII: W32 - Uncertainty Quantification for Computer Vision; W33 - Recovering 6D Object Pose; W34 - Drawings and Abstract Imagery: Representation and Analysis; W35 - Sign Language Understanding; W36 - A Challenge for Out-of-Distribution Generalization in Computer Vision; W37 - Vision With Biased or Scarce Data; W38 - Visual Object Tracking Challenge.


Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences

Author: Gustau Camps-Valls

Publisher: John Wiley & Sons

Published: 2021-08-16

Total Pages: 436

ISBN-13: 1119646146

DOWNLOAD EBOOK

DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.


Pattern Recognition

Pattern Recognition

Author: Shutao Li

Publisher: Springer

Published: 2014-11-05

Total Pages: 498

ISBN-13: 366245646X

DOWNLOAD EBOOK

The two-volume set CCIS 483 and CCIS 484 constitutes the refereed proceedings of the 6th Chinese Conference on Pattern Recognition, CCPR 2014, held in Changsha, China, in November 2014. The 112 revised full papers presented in two volumes were carefully reviewed and selected from 225 submissions. The papers are organized in topical sections on fundamentals of pattern recognition; feature extraction and classification; computer vision; image processing and analysis; video processing and analysis; biometric and action recognition; biomedical image analysis; document and speech analysis; pattern recognition applications.