Amperometric and Impedance Monitoring Systems for Biomedical Applications

Amperometric and Impedance Monitoring Systems for Biomedical Applications

Author: Jaime Punter-Villagrasa

Publisher: Springer

Published: 2017-09-13

Total Pages: 250

ISBN-13: 3319648012

DOWNLOAD EBOOK

The book presents the conception and realization of a pervasive electronic architecture for electrochemical applications, focusing on electronic instrumentation design and device development, particularly in electrochemical Point-of-Care and Lab-on-a-Chip devices, covering examples based on amperometric (DC) and impedance detection (AC) techniques. The presented electronics combine tailored front-end instrumentation and back-end data post-processing, enabling applications in different areas, and across a variety of techniques, analytes, transducers and environments. It addresses how the electronics are designed and implemented with special interest in the flow process: starting from electronic circuits and electrochemical biosensor design to a final validation and implementation for specific applications. Similarly, other important aspects are discussed throughout the book, such as electrochemical techniques, different analytes, targets, electronics reliability and robustness. The book also describes the use of the presented electronics in different electrochemical applications through some examples: instantaneous and non-destructive cellular monitoring and portable glucose monitoring device. Moreover, the book aims to introduce a comprehensive approach to electronic circuits, techniques and electrochemical sensors in POC devices to a general audience of students in biomedical and electronics engineering, scientists, and engineers.


Electrochemical Sensors, Biosensors and their Biomedical Applications

Electrochemical Sensors, Biosensors and their Biomedical Applications

Author: Xueji Zhang

Publisher: Academic Press

Published: 2011-04-28

Total Pages: 625

ISBN-13: 008055489X

DOWNLOAD EBOOK

This book broadly reviews the modem techniques and significant applications of chemical sensors and biosensors. Chapters are written by experts in the field – including Professor Joseph Wang, the most cited scientist in the world and renowned expert on sensor science who is also co-editor. Each chapter provides technical details beyond the level found in typical journal articles, and explores the application of chemical sensors and biosensors to a significant problem in biomedical science, also providing a prospectus for the future.This book compiles the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including nitric oxide sensors, glucose sensors, DNA sensors, hydrogen sulfide sensors, oxygen sensors, superoxide sensors, immuno sensors, lab on chip, implatable microsensors, et al. Emphasis is laid on practical problems, ranging from chemical application to biomedical monitoring and from in vitro to in vivo, from single cell to animal to human measurement. This provides the unique opportunity of exchanging and combining the expertise of otherwise apparently unrelated disciplines of chemistry, biological engineering, and electronic engineering, medical, physiological. - Provides user-oriented guidelines for the proper choice and application of new chemical sensors and biosensors - Details new methodological advancements related to and correlated with the measurement of interested species in biomedical samples - Contains many case studies to illustrate the range of application and importance of the chemical sensors and biosensors


Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems

Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems

Author: Sabu Thomas

Publisher: Elsevier

Published: 2021-10-12

Total Pages: 440

ISBN-13: 0128237287

DOWNLOAD EBOOK

Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized detection systems and micro/nanomachines are also reviewed. Subsequent chapters explore the emerging application of these mobile devices for miniaturized analysis in various fields, including medicine and biomedicine, environmental chemistry, food chemistry, and forensic chemistry. This is an important reference source for materials scientists and engineers wanting to understand how miniaturization techniques are being used to create a range of efficient, sustainable electronic and optical devices. Miniaturization describes the concept of manufacturing increasingly smaller mechanical, optical, and electronic products and devices. These smaller instruments can be used to produce micro- and nanoscale components required for analytical procedures. A variety of micro/nanoscale materials have been synthesized and used in analytical procedures, such as sensing materials, sorbents, adsorbents, catalysts, and reactors. The miniaturization of analytical instruments can be applied to the different steps of analytical procedures, such as sample preparation, analytical separation, and detection, reducing the total cost of manufacturing the instruments and the needed reagents and organic solvents. - Outlines how miniaturization techniques can be used to create new optical and electronic micro- and nanodevices - Explores major application areas, including biomedicine, environmental science and security - Assesses the major challenges of using miniaturization techniques


Impedance Spectroscopy and its Application in Biological Detection

Impedance Spectroscopy and its Application in Biological Detection

Author: Geeta Bhatt

Publisher: CRC Press

Published: 2023-12-07

Total Pages: 283

ISBN-13: 100380862X

DOWNLOAD EBOOK

This book includes basics of impedance spectroscopy technology, substrate compatibility issues, integration capabilities, and several applications in the detection of different analytes. It helps explore the importance of this technique in biological detection, related micro/nanofabricated platforms and respective integration, biological synthesis schemes to carry out the detection, associated challenges, and related future directions. The various qualitative/quantitative findings of several modules are summarized in the form of the detailed descriptions, schematics, and tables. Features: Serves as a single source for exploring underlying fundamental principles and the various biological applications through impedance spectroscopy. Includes chapters based on nonbiological applications of impedance spectroscopy and IoT-enabled impedance spectroscopy-based methods for detection. Discusses derivations, substrates, applications, and several integrations. Describes micro/nanofabrication of impedance-based biological sensors. Reviews updated integrations like digital manufacturing and IoT. This book is aimed at researchers and graduate students in material science, impedance spectroscopy, and biosensing.


Mechanical Engineering in Biomedical Application

Mechanical Engineering in Biomedical Application

Author: Jay Prakash Srivastava

Publisher: John Wiley & Sons

Published: 2024-01-02

Total Pages: 328

ISBN-13: 1394175086

DOWNLOAD EBOOK

MECHANICAL ENGINEERING IN BIOMEDICAL APPLICATIONS The book explores the latest research and developments related to the interdisciplinary field of biomedical and mechanical engineering offering insights and perspectives on the research, key technologies, and mechanical engineering techniques used in biomedical applications. The book is divided into several sections that cover different aspects of mechanical engineering in biomedical research. The first section focuses on the role of additive manufacturing technologies, rehabilitation in healthcare applications, and artificial recreation of human organs. The section also covers the advances, risks, and challenges of bio 3D printing. The second section presents insight into biomaterials, including their properties, applications, and fabrication techniques. The section also covers the use of powder metallurgy methodology and techniques of biopolymer and bio-ceramic coatings on prosthetic implants. The third section covers biofluid mechanics, including the mechanics of fluid flow within our body, the mechanical aspects of human synovial fluids, and the design of medical devices for fluid flow applications. The section also covers the use of computational modeling to study the blockage of carotid arteries. The final section elaborates on soft robotic manipulation for use in medical sciences. Audience The book provides practical insights and applications for mechanical engineers, biomedical engineers, medical professionals, and researchers working on the design and development of biomedical devices and implants.


Protein-Nanoparticle Interactions

Protein-Nanoparticle Interactions

Author: Masoud Rahman

Publisher: Springer Science & Business Media

Published: 2013-06-24

Total Pages: 95

ISBN-13: 3642375553

DOWNLOAD EBOOK

In recent years, the fabrication of nanomaterials and exploration of their properties have attracted the attention of various scientific disciplines such as biology, physics, chemistry, and engineering. Although nanoparticulate systems are of significant interest in various scientific and technological areas, there is little known about the safety of these nanoscale objects. It has now been established that the surfaces of nanoparticles are immediately covered by biomolecules (e.g. proteins, ions, and enzymes) upon their entrance into a biological medium. This interaction with the biological medium modulates the surface of the nanoparticles, conferring a “biological identity” to their surfaces (referred to as a “corona”), which determines the subsequent cellular/tissue responses. The new interface between the nanoparticles and the biological medium/proteins, called “bio-nano interface,” has been very rarely studied in detail to date, though the interest in this topic is rapidly growing. In this book, the importance of the physiochemical characteristics of nanoparticles for the properties of the protein corona is discussed in detail, followed by comprehensive descriptions of the methods for assessing the protein-nanoparticle interactions. The advantages and limitations of available corona evaluation methods (e.g. spectroscopy methods, mass spectrometry, nuclear magnetic resonance, electron microscopy, X-ray crystallography, and differential centrifugal sedimentation) are examined in detail, followed by a discussion of the possibilities for enhancing the current methods and a call for new techniques. Moreover, the advantages and disadvantages of protein-nanoparticle interaction phenomena are explored and discussed, with a focus on the biological impacts.


State of the Art in Biosensors

State of the Art in Biosensors

Author: Toonika Rinken

Publisher: BoD – Books on Demand

Published: 2013-03-13

Total Pages: 364

ISBN-13: 9535110047

DOWNLOAD EBOOK

As biosensors comprise a prospective alternative to traditional chemical analyses, enabling fast on- and in-line measurements with sufficient selectivity, the field is expanding rapidly and is offering new ideas and developments every day. This book aims to cover the present state of the art in the biosensor technology and introduce the general aspects of biosensor- based techniques and methods. The book consists of 13 chapters by 44 authors and is divided into 3 sections, focused on bio-recognition techniques, signal transduction methods and signal analysis.


Biomedical Electronics, Noise Shaping ADCs, and Frequency References

Biomedical Electronics, Noise Shaping ADCs, and Frequency References

Author: Pieter Harpe

Publisher: Springer Nature

Published: 2023-06-22

Total Pages: 345

ISBN-13: 3031289129

DOWNLOAD EBOOK

This book is based on the 18 tutorials presented during the 30th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, with specific contributions focusing on analog circuits for machine learning, current/voltage/temperature sensors, and high-speed communication via wireless, wireline, or optical links. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.


Applications of Electrochemistry in Medicine

Applications of Electrochemistry in Medicine

Author: Mordechay Schlesinger

Publisher: Springer Science & Business Media

Published: 2013-03-02

Total Pages: 457

ISBN-13: 1461461480

DOWNLOAD EBOOK

Medical Applications of Electrochemistry, a volume of the series Modern Aspects of Electrochemistry, illustrates the interdisciplinary nature of modern science by indicating the many current issues in medicine that are susceptible to solution by electrochemical methods. This book also suggests how personalized medicine can develop.


Handbook of Neuroengineering

Handbook of Neuroengineering

Author: Nitish V. Thakor

Publisher: Springer Nature

Published: 2023-02-02

Total Pages: 3686

ISBN-13: 9811655405

DOWNLOAD EBOOK

This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​