Introduction to Topology

Introduction to Topology

Author: V. A. Vasilʹev

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 165

ISBN-13: 0821821628

DOWNLOAD EBOOK

This English translation of a Russian book presents the basic notions of differential and algebraic topology, which are indispensable for specialists and useful for research mathematicians and theoretical physicists. In particular, ideas and results are introduced related to manifolds, cell spaces, coverings and fibrations, homotopy groups, homology and cohomology, intersection index, etc. The author notes, "The lecture note origins of the book left a significant imprint on itsstyle. It contains very few detailed proofs: I tried to give as many illustrations as possible and to show what really occurs in topology, not always explaining why it occurs." He concludes, "As a rule, only those proofs (or sketches of proofs) that are interesting per se and have importantgeneralizations are presented."


Methods of Information Geometry

Methods of Information Geometry

Author: Shun-ichi Amari

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 220

ISBN-13: 9780821843024

DOWNLOAD EBOOK

Information geometry provides the mathematical sciences with a fresh framework of analysis. This book presents a comprehensive introduction to the mathematical foundation of information geometry. It provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, and convex analysis.


Generalized Cohomology

Generalized Cohomology

Author: Akira Kōno

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 276

ISBN-13: 9780821835142

DOWNLOAD EBOOK

Aims to give an exposition of generalized (co)homology theories that can be read by a group of mathematicians who are not experts in algebraic topology. This title starts with basic notions of homotopy theory, and introduces the axioms of generalized (co)homology theory. It also discusses various types of generalized cohomology theories.


Linear and Quasi-linear Equations of Parabolic Type

Linear and Quasi-linear Equations of Parabolic Type

Author: Olʹga A. Ladyženskaja

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 74

ISBN-13: 9780821815731

DOWNLOAD EBOOK

Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.


Fewnomials

Fewnomials

Author: A. G. Khovanskiĭ

Publisher: American Mathematical Soc.

Published: 1991

Total Pages: 154

ISBN-13: 9780821898307

DOWNLOAD EBOOK

The ideology of the theory of fewnomials is the following: real varieties defined by "simple", not cumbersome, systems of equations should have a "simple" topology. One of the results of the theory is a real transcendental analogue of the Bezout theorem: for a large class of systems of *k transcendental equations in *k real variables, the number of roots is finite and can be explicitly estimated from above via the "complexity" of the system. A more general result is the construction of a category of real transcendental manifolds that resemble algebraic varieties in their properties. These results give new information on level sets of elementary functions and even on algebraic equations. The topology of geometric objects given via algebraic equations (real-algebraic curves, surfaces, singularities, etc.) quickly becomes more complicated as the degree of the equations increases. It turns out that the complexity of the topology depends not on the degree of the equations but only on the number of monomials appearing in them. This book provides a number of theorems estimating the complexity of the topology of geometric objects via the cumbersomeness of the defining equations. In addition, the author presents a version of the theory of fewnomials based on the model of a dynamical system in the plane. Pfaff equations and Pfaff manifolds are also studied.