Almost Periodic Solutions of Impulsive Differential Equations

Almost Periodic Solutions of Impulsive Differential Equations

Author: Gani T. Stamov

Publisher: Springer Science & Business Media

Published: 2012-03-09

Total Pages: 235

ISBN-13: 3642275451

DOWNLOAD EBOOK

In the present book a systematic exposition of the results related to almost periodic solutions of impulsive differential equations is given and the potential for their application is illustrated.


Impulsive Differential Equations

Impulsive Differential Equations

Author: N Perestyuk

Publisher: World Scientific

Published: 1995-08-31

Total Pages: 474

ISBN-13: 981449982X

DOWNLOAD EBOOK

Contents:General Description of Impulsive Differential SystemsLinear SystemsStability of SolutionsPeriodic and Almost Periodic Impulsive SystemsIntegral Sets of Impulsive SystemsOptimum Control in Impulsive SystemsAsymptotic Study of Oscillations in Impulsive SystemsA Periodic and Almost Periodic Impulsive SystemsBibliographySubject Index Readership: Researchers in nonlinear science. keywords:Differential Equations with Impulses;Linear Systems;Stability;Periodic and Quasi-Periodic Solutions;Integral Sets;Optimal Control “… lucid … the book … will benefit all who are interested in IDE…” Mathematics Abstracts


Impulsive Differential Equations

Impulsive Differential Equations

Author: Drumi Bainov

Publisher: Routledge

Published: 2017-11-01

Total Pages: 238

ISBN-13: 1351439103

DOWNLOAD EBOOK

Impulsive differential equations have been the subject of intense investigation in the last 10-20 years, due to the wide possibilities for their application in numerous fields of science and technology. This new work presents a systematic exposition of the results solving all of the more important problems in this field.


Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations

Author: Marko Kostić

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-05-06

Total Pages: 372

ISBN-13: 3110641852

DOWNLOAD EBOOK

This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.


Functional and Impulsive Differential Equations of Fractional Order

Functional and Impulsive Differential Equations of Fractional Order

Author: Ivanka Stamova

Publisher: CRC Press

Published: 2017-03-03

Total Pages: 277

ISBN-13: 1498764843

DOWNLOAD EBOOK

The book presents qualitative results for different classes of fractional equations, including fractional functional differential equations, fractional impulsive differential equations, and fractional impulsive functional differential equations, which have not been covered by other books. It manifests different constructive methods by demonstrating how these techniques can be applied to investigate qualitative properties of the solutions of fractional systems. Since many applications have been included, the demonstrated techniques and models can be used in training students in mathematical modeling and in the study and development of fractional-order models.


Theory Of Impulsive Differential Equations

Theory Of Impulsive Differential Equations

Author: Vangipuram Lakshmikantham

Publisher: World Scientific

Published: 1989-05-01

Total Pages: 287

ISBN-13: 9814507261

DOWNLOAD EBOOK

Many evolution processes are characterized by the fact that at certain moments of time they experience a change of state abruptly. These processes are subject to short-term perturbations whose duration is negligible in comparison with the duration of the process. Consequently, it is natural to assume that these perturbations act instantaneously, that is, in the form of impulses. It is known, for example, that many biological phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control models in economics, pharmacokinetics and frequency modulated systems, do exhibit impulsive effects. Thus impulsive differential equations, that is, differential equations involving impulse effects, appear as a natural description of observed evolution phenomena of several real world problems.


Impulsive Differential Equations with a Small Parameter

Impulsive Differential Equations with a Small Parameter

Author: Dimit?r Ba?nov

Publisher: World Scientific

Published: 1994

Total Pages: 292

ISBN-13: 9789810214340

DOWNLOAD EBOOK

This book is devoted to impulsive differential equations with a small parameter. It consists of three chapters. Chapter One serves as an introduction. In Chapter Two, regularly perturbed impulsive differential equations are considered. Modifications of the method of small parameter, the averaging method, and the method of integral manifolds are proposed. In Chapter Three, singularly perturbed differential equations are considered. A modification of the method of boundary functions is proposed, and asymptotic expansions along the powers of the small parameters of the solutions of the initial value problem, the periodic problem, and some boundary value problems are found. Numerous nonstandard applications to the theory of optimal control are made. The application of some other methods to impulsive singularly perturbed equations is illustrated, such as the numerical-analytical method for finding periodic solutions, the method of differential inequalities and the averaging method.The book is written clearly, strictly, and understandably. It is intended for mathematicians, physicists, chemists, biologists and economists, as well as for senior students of these specialities.


Almost Periodicity, Chaos, and Asymptotic Equivalence

Almost Periodicity, Chaos, and Asymptotic Equivalence

Author: Marat Akhmet

Publisher: Springer

Published: 2019-06-20

Total Pages: 368

ISBN-13: 303020572X

DOWNLOAD EBOOK

The central subject of this book is Almost Periodic Oscillations, the most common oscillations in applications and the most intricate for mathematical analysis. Prof. Akhmet's lucid and rigorous examination proves these oscillations are a "regular" component of chaotic attractors. The book focuses on almost periodic functions, first of all, as Stable (asymptotically) solutions of differential equations of different types, presumably discontinuous; and, secondly, as non-isolated oscillations in chaotic sets. Finally, the author proves the existence of Almost Periodic Oscillations (asymptotic and bi-asymptotic) by asymptotic equivalence between systems. The book brings readers' attention to contemporary methods for considering oscillations as well as to methods with strong potential for study of chaos in the future. Providing three powerful instruments for mathematical research of oscillations where dynamics are observable and applied, the book is ideal for engineers as well as specialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology. Distinctively combines results and methods of the theory of differential equations with thorough investigation of chaotic dynamics with almost periodic ingredients; Provides all necessary mathematical basics in their most developed form, negating the need for any additional sources for readers to start work in the area; Presents a unique method of investigation of discontinuous almost periodic solutions in its unified form, employed to differential equations with different types of discontinuity; Develops the equivalence method to its ultimate effective state such that most important theoretical problems and practical applications can be analyzed by the method.