Algorithmic Geometry

Algorithmic Geometry

Author: Jean-Daniel Boissonnat

Publisher: Cambridge University Press

Published: 1998-03-05

Total Pages: 548

ISBN-13: 9780521565295

DOWNLOAD EBOOK

The design and analysis of geometric algorithms have seen remarkable growth in recent years, due to their application in, for example, computer vision, graphics, medical imaging and CAD. The goals of this book are twofold: first to provide a coherent and systematic treatment of the foundations; secondly to present algorithmic solutions that are amenable to rigorous analysis and are efficient in practical situations. When possible, the algorithms are presented in their most general d-dimensional setting. Specific developments are given for the 2- or 3-dimensional cases when this results in significant improvements. The presentation is confined to Euclidean affine geometry, though the authors indicate whenever the treatment can be extended to curves and surfaces. The prerequisites for using the book are few, which will make it ideal for teaching advanced undergraduate or beginning graduate courses in computational geometry.


Computational Geometry

Computational Geometry

Author: Mark de Berg

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 370

ISBN-13: 3662042452

DOWNLOAD EBOOK

This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.


Computational Geometry

Computational Geometry

Author: Franco P. Preparata

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 1461210984

DOWNLOAD EBOOK

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2


Algorithms in Real Algebraic Geometry

Algorithms in Real Algebraic Geometry

Author: Saugata Basu

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 602

ISBN-13: 3662053551

DOWNLOAD EBOOK

In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing. Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. This self-contained book is accessible to graduate and undergraduate students.


Algorithms in Combinatorial Geometry

Algorithms in Combinatorial Geometry

Author: Herbert Edelsbrunner

Publisher: Springer Science & Business Media

Published: 1987-07-31

Total Pages: 446

ISBN-13: 9783540137221

DOWNLOAD EBOOK

Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.


Computational Geometry

Computational Geometry

Author: Ketan Mulmuley

Publisher: Prentice Hall

Published: 1994

Total Pages: 472

ISBN-13:

DOWNLOAD EBOOK

For beginning graduate-level courses in computational geometry. This up-to-date and concise introduction to computational geometry with emphasis on simple randomized methods is designed for quick, easy access to beginners.


Polyhedral and Algebraic Methods in Computational Geometry

Polyhedral and Algebraic Methods in Computational Geometry

Author: Michael Joswig

Publisher: Springer Science & Business Media

Published: 2013-01-04

Total Pages: 251

ISBN-13: 1447148177

DOWNLOAD EBOOK

Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.


Computational Geometry and Computer Graphics in C++

Computational Geometry and Computer Graphics in C++

Author: Michael Jay Laszlo

Publisher:

Published: 1996

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

This book provides an accessible introduction to methods in computational geometry and computer graphics. It emphasizes the efficient object-oriented implemenation of geometric methods with useable C++ code for all methods discussed.


Discrete and Computational Geometry

Discrete and Computational Geometry

Author: Satyan L. Devadoss

Publisher: Princeton University Press

Published: 2011-04-11

Total Pages: 270

ISBN-13: 1400838983

DOWNLOAD EBOOK

An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)


Algorithmic Advances in Riemannian Geometry and Applications

Algorithmic Advances in Riemannian Geometry and Applications

Author: Hà Quang Minh

Publisher: Springer

Published: 2016-10-05

Total Pages: 216

ISBN-13: 3319450263

DOWNLOAD EBOOK

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.