Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations

Author: Marius van der Put

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 446

ISBN-13: 3642557503

DOWNLOAD EBOOK

From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews


Asymptotic Differential Algebra and Model Theory of Transseries

Asymptotic Differential Algebra and Model Theory of Transseries

Author: Matthias Aschenbrenner

Publisher: Princeton University Press

Published: 2017-06-06

Total Pages: 873

ISBN-13: 0691175438

DOWNLOAD EBOOK

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.


Differential-algebraic Equations

Differential-algebraic Equations

Author: Peter Kunkel

Publisher: European Mathematical Society

Published: 2006

Total Pages: 396

ISBN-13: 9783037190173

DOWNLOAD EBOOK

Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.


Involution

Involution

Author: Werner M. Seiler

Publisher: Springer Science & Business Media

Published: 2009-10-26

Total Pages: 663

ISBN-13: 3642012876

DOWNLOAD EBOOK

The book provides a self-contained account of the formal theory of general, i.e. also under- and overdetermined, systems of differential equations which in its central notion of involution combines geometric, algebraic, homological and combinatorial ideas.


Ordinary Differential Equations and Linear Algebra

Ordinary Differential Equations and Linear Algebra

Author: Todd Kapitula

Publisher: SIAM

Published: 2015-11-17

Total Pages: 308

ISBN-13: 1611974097

DOWNLOAD EBOOK

Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system. Ordinary Differential Equations and Linear Algebra: A Systems Approach systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.


Algebraic Approach to Differential Equations

Algebraic Approach to Differential Equations

Author: D?ng Tr ng Lˆ

Publisher: World Scientific

Published: 2010

Total Pages: 320

ISBN-13: 9814273244

DOWNLOAD EBOOK

Mixing elementary results and advanced methods, Algebraic Approach to Differential Equations aims to accustom differential equation specialists to algebraic methods in this area of interest. It presents material from a school organized by The Abdus Salam International Centre for Theoretical Physics (ICTP), the Bibliotheca Alexandrina, and the International Centre for Pure and Applied Mathematics (CIMPA).


Lectures on Differential Galois Theory

Lectures on Differential Galois Theory

Author: Andy R. Magid

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 119

ISBN-13: 0821870041

DOWNLOAD EBOOK

Differential Galois theory studies solutions of differential equations over a differential base field. In much the same way that ordinary Galois theory is the theory of field extensions generated by solutions of (one variable) polynomial equations, differential Galois theory looks at the nature of the differential field extension generated by the solution of differential equations. An additional feature is that the corresponding differential Galois groups (of automorphisms of the extension fixing the base and commuting with the derivation) are algebraic groups. This book deals with the differential Galois theory of linear homogeneous differential equations, whose differential Galois groups are algebraic matrix groups. In addition to providing a convenient path to Galois theory, this approach also leads to the constructive solution of the inverse problem of differential Galois theory for various classes of algebraic groups. Providing a self-contained development and many explicit examples, this book provides a unique approach to differential Galois theory and is suitable as a textbook at the advanced graduate level.


Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Author: K. E. Brenan

Publisher: SIAM

Published: 1996-01-01

Total Pages: 268

ISBN-13: 9781611971224

DOWNLOAD EBOOK

Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.


Algebraic Groups and Differential Galois Theory

Algebraic Groups and Differential Galois Theory

Author: Teresa Crespo

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 242

ISBN-13: 082185318X

DOWNLOAD EBOOK

Differential Galois theory has seen intense research activity during the last decades in several directions: elaboration of more general theories, computational aspects, model theoretic approaches, applications to classical and quantum mechanics as well as to other mathematical areas such as number theory. This book intends to introduce the reader to this subject by presenting Picard-Vessiot theory, i.e. Galois theory of linear differential equations, in a self-contained way. The needed prerequisites from algebraic geometry and algebraic groups are contained in the first two parts of the book. The third part includes Picard-Vessiot extensions, the fundamental theorem of Picard-Vessiot theory, solvability by quadratures, Fuchsian equations, monodromy group and Kovacic's algorithm. Over one hundred exercises will help to assimilate the concepts and to introduce the reader to some topics beyond the scope of this book. This book is suitable for a graduate course in differential Galois theory. The last chapter contains several suggestions for further reading encouraging the reader to enter more deeply into different topics of differential Galois theory or related fields.