Algebraic Geometry and Geometric Modeling

Algebraic Geometry and Geometric Modeling

Author: Mohamed Elkadi

Publisher: Springer Science & Business Media

Published: 2006-11-02

Total Pages: 252

ISBN-13: 3540332758

DOWNLOAD EBOOK

This book spans the distance between algebraic descriptions of geometric objects and the rendering of digital geometric shapes based on algebraic models. These contrasting points of view inspire a thorough analysis of the key challenges and how they are met. The articles focus on important classes of problems: implicitization, classification, and intersection. Combining illustrative graphics, computations and review articles this book helps the reader gain a firm practical grasp of these subjects.


Computer Graphics and Geometric Modelling

Computer Graphics and Geometric Modelling

Author: Max K. Agoston

Publisher: Springer Science & Business Media

Published: 2005-01-04

Total Pages: 960

ISBN-13: 9781852338183

DOWNLOAD EBOOK

Possibly the most comprehensive overview of computer graphics as seen in the context of geometric modeling, this two-volume work covers implementation and theory in a thorough and systematic fashion. It covers the computer graphics part of the field of geometric modeling and includes all the standard computer graphics topics. The CD-ROM features two companion programs.


Curves and Surfaces in Geometric Modeling

Curves and Surfaces in Geometric Modeling

Author: Jean H. Gallier

Publisher: Morgan Kaufmann

Published: 2000

Total Pages: 512

ISBN-13: 9781558605992

DOWNLOAD EBOOK

"Curves and Surfaces in Geometric Modeling: Theory and Algorithms offers a theoretically unifying understanding of polynomial curves and surfaces as well as an effective approach to implementation that you can apply to your own work as a graduate student, scientist, or practitioner." "The focus here is on blossoming - the process of converting a polynomial to its polar form - as a natural, purely geometric explanation of the behavior of curves and surfaces. This insight is important for more than just its theoretical elegance - the author demonstrates the value of blossoming as a practical algorithmic tool for generating and manipulating curves and surfaces that meet many different criteria. You'll learn to use this and other related techniques drawn from affine geometry for computing and adjusting control points, deriving the continuity conditions for splines, creating subdivision surfaces, and more." "It will be an essential acquisition for readers in many different areas, including computer graphics and animation, robotics, virtual reality, geometric modeling and design, medical imaging, computer vision, and motion planning."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved


Model Theory and Algebraic Geometry

Model Theory and Algebraic Geometry

Author: Elisabeth Bouscaren

Publisher: Springer

Published: 2009-03-14

Total Pages: 223

ISBN-13: 3540685219

DOWNLOAD EBOOK

This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.


Geometric Algebra for Computer Science

Geometric Algebra for Computer Science

Author: Leo Dorst

Publisher: Elsevier

Published: 2010-07-26

Total Pages: 664

ISBN-13: 0080553109

DOWNLOAD EBOOK

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA


Algebraic Models in Geometry

Algebraic Models in Geometry

Author: Yves Félix

Publisher: Oxford University Press

Published: 2008

Total Pages: 483

ISBN-13: 0199206511

DOWNLOAD EBOOK

A text aimed at both geometers needing the tools of rational homotopy theory to understand and discover new results concerning various geometric subjects, and topologists who require greater breadth of knowledge about geometric applications of the algebra of homotopy theory.


Topics in Algebraic Geometry and Geometric Modeling

Topics in Algebraic Geometry and Geometric Modeling

Author: Ron Goldman

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 378

ISBN-13: 0821834207

DOWNLOAD EBOOK

Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture. The NSF sponsored the four-day ''Vilnius Workshop on Algebraic Geometry and Geometric Modeling'', which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, ''On the determination of the degree of an equations obtained by elimination'', which foreshadows the modern application of mixed volumes in algebraic geometry. The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.


New Foundations in Mathematics

New Foundations in Mathematics

Author: Garret Sobczyk

Publisher: Springer Science & Business Media

Published: 2012-10-26

Total Pages: 373

ISBN-13: 0817683852

DOWNLOAD EBOOK

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.


Geometric Modeling and Algebraic Geometry

Geometric Modeling and Algebraic Geometry

Author: Bert Jüttler

Publisher: Springer Science & Business Media

Published: 2007-12-24

Total Pages: 227

ISBN-13: 3540721851

DOWNLOAD EBOOK

Geometric Modeling and Algebraic Geometry, though closely related, are traditionally represented by two almost disjoint scientific communities. Both fields deal with objects defined by algebraic equations, but the objects are studied in different ways. In 12 chapters written by leading experts, this book presents recent results which rely on the interaction of both fields. Some of these results have been obtained from a major European project in geometric modeling.


An Integrated Introduction to Computer Graphics and Geometric Modeling

An Integrated Introduction to Computer Graphics and Geometric Modeling

Author: Ronald Goldman

Publisher: CRC Press

Published: 2009-07-14

Total Pages: 592

ISBN-13: 1439803358

DOWNLOAD EBOOK

Taking a novel, more appealing approach than current texts, An Integrated Introduction to Computer Graphics and Geometric Modeling focuses on graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with f