Algebraic Curves Over a Finite Field

Algebraic Curves Over a Finite Field

Author: J. W. P. Hirschfeld

Publisher: Princeton University Press

Published: 2008-03-23

Total Pages: 716

ISBN-13: 0691096791

DOWNLOAD EBOOK

This title provides a self-contained introduction to the theory of algebraic curves over a finite field, whose origins can be traced back to the works of Gauss and Galois on algebraic equations in two variables with coefficients modulo a prime number.


Algebraic Curves Over Finite Fields

Algebraic Curves Over Finite Fields

Author: Carlos Moreno

Publisher: Cambridge University Press

Published: 1993-10-14

Total Pages: 264

ISBN-13: 9780521459013

DOWNLOAD EBOOK

Develops the theory of algebraic curves over finite fields, their zeta and L-functions and the theory of algebraic geometric Goppa codes.


Algebraic Curves over a Finite Field

Algebraic Curves over a Finite Field

Author: J. W. P. Hirschfeld

Publisher: Princeton University Press

Published: 2013-03-25

Total Pages: 717

ISBN-13: 1400847419

DOWNLOAD EBOOK

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.


Codes on Algebraic Curves

Codes on Algebraic Curves

Author: Serguei A. Stepanov

Publisher: Springer Science & Business Media

Published: 1999-07-31

Total Pages: 372

ISBN-13: 9780306461446

DOWNLOAD EBOOK

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.


Rational Points on Curves Over Finite Fields

Rational Points on Curves Over Finite Fields

Author: Harald Niederreiter

Publisher: Cambridge University Press

Published: 2001-06-14

Total Pages: 260

ISBN-13: 9780521665438

DOWNLOAD EBOOK

Ever since the seminal work of Goppa on algebraic-geometry codes, rational points on algebraic curves over finite fields have been an important research topic for algebraic geometers and coding theorists. The focus in this application of algebraic geometry to coding theory is on algebraic curves over finite fields with many rational points (relative to the genus). Recently, the authors discovered another important application of such curves, namely to the construction of low-discrepancy sequences. These sequences are needed for numerical methods in areas as diverse as computational physics and mathematical finance. This has given additional impetus to the theory of, and the search for, algebraic curves over finite fields with many rational points. This book aims to sum up the theoretical work on algebraic curves over finite fields with many rational points and to discuss the applications of such curves to algebraic coding theory and the construction of low-discrepancy sequences.


Algebraic Functions and Projective Curves

Algebraic Functions and Projective Curves

Author: David Goldschmidt

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 195

ISBN-13: 0387224459

DOWNLOAD EBOOK

This book gives an introduction to algebraic functions and projective curves. It covers a wide range of material by dispensing with the machinery of algebraic geometry and proceeding directly via valuation theory to the main results on function fields. It also develops the theory of singular curves by studying maps to projective space, including topics such as Weierstrass points in characteristic p, and the Gorenstein relations for singularities of plane curves.


Algebraic Geometry and Its Applications

Algebraic Geometry and Its Applications

Author: Jean Chaumine

Publisher: World Scientific

Published: 2008

Total Pages: 530

ISBN-13: 9812793429

DOWNLOAD EBOOK

This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.


Rational Points on Elliptic Curves

Rational Points on Elliptic Curves

Author: Joseph H. Silverman

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 292

ISBN-13: 1475742525

DOWNLOAD EBOOK

The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.


Vertex Algebras and Algebraic Curves

Vertex Algebras and Algebraic Curves

Author: Edward Frenkel

Publisher: American Mathematical Soc.

Published: 2004-08-25

Total Pages: 418

ISBN-13: 0821836749

DOWNLOAD EBOOK

Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.


Algebraic Curves

Algebraic Curves

Author: William Fulton

Publisher:

Published: 2008

Total Pages: 120

ISBN-13:

DOWNLOAD EBOOK

The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections.