Algebraic combinatorics has evolved into one of the most active areas of mathematics during the last several decades. Its recent developments have become more interactive with not only its traditional field representation theory but also algebraic geometry, harmonic analysis and mathematical physics.This book presents articles from some of the key contributors in the area. It covers Hecke algebras, Hall algebras, the Macdonald polynomial and its deviations, and their relations with other fields.
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.
Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
Proceedings of a high-level conference on discrete mathematics, focusing on group actions in the areas of pure mathematics, applied mathematics, computer science, physics, and chemistry. A useful tool for researchers and graduate students in discrete mathematics and theoretical computer science.
This volume contains the proceedings of the tenth international conference on Representation Theory of Algebraic Groups and Quantum Groups, held August 2-6, 2010, at Nagoya University, Nagoya, Japan. The survey articles and original papers contained in this volume offer a comprehensive view of current developments in the field. Among others reflecting recent trends, one central theme is research on representations in the affine case. In three articles, the authors study representations of W-algebras and affine Lie algebras at the critical level, and three other articles are related to crystals in the affine case, that is, Mirkovic-Vilonen polytopes for affine type $A$ and Kerov-Kirillov-Reshetikhin type bijection for affine type $E_6$. Other contributions cover a variety of topics such as modular representation theory of finite groups of Lie type, quantum queer super Lie algebras, Khovanov's arc algebra, Hecke algebras and cyclotomic $q$-Schur algebras, $G_1T$-Verma modules for reductive algebraic groups, equivariant $K$-theory of quantum vector bundles, and the cluster algebra. This book is suitable for graduate students and researchers interested in geometric and combinatorial representation theory, and other related fields.