Algebra IV

Algebra IV

Author: A.I. Kostrikin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 210

ISBN-13: 3662028697

DOWNLOAD EBOOK

Group theory is one of the most fundamental branches of mathematics. This highly accessible volume of the Encyclopaedia is devoted to two important subjects within this theory. Extremely useful to all mathematicians, physicists and other scientists, including graduate students who use group theory in their work.


Algebra 4

Algebra 4

Author: Ramji Lal

Publisher: Springer Nature

Published: 2021-03-29

Total Pages: 332

ISBN-13: 9811604754

DOWNLOAD EBOOK

This book, the fourth book in the four-volume series in algebra, discusses Lie algebra and representation theory in detail. It covers topics such as semisimple Lie algebras, root systems, representation theory of Lie algebra, Chevalley groups and representation theory of Chevalley groups. Numerous motivating illustrations have been presented along with exercises, enabling readers to acquire a good understanding of topics which they can then use to find the exact or most realistic solutions to their problems.


Algebraic Geometry IV

Algebraic Geometry IV

Author: A.N. Parshin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 291

ISBN-13: 366203073X

DOWNLOAD EBOOK

Two contributions on closely related subjects: the theory of linear algebraic groups and invariant theory, by well-known experts in the fields. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics and theoretical physics.


Algebra II

Algebra II

Author: N. Bourbaki

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 457

ISBN-13: 3642616984

DOWNLOAD EBOOK

This is a softcover reprint of chapters four through seven of the 1990 English translation of the revised and expanded version of Bourbaki’s Algebre. Much material was added or revised for this edition, which thoroughly establishes the theories of commutative fields and modules over a principal ideal domain.