As the first volume in a unique series concentrating on in-depth discussions of GIS topics, GIS Applications in Agriculture examines ways that this powerful technology can help farmers/firms to produce a greater abundance of crops with more efficiency and at lower costs. Each chapter describes the nature of the problem, examines the purpose of the GIS application, describes methods used to develop the application, provides results, and offers a conclusion as well as other supportive information. When appropriate, it presents the underlying statistical approach for the GIS software that is used. This text also includes a CD-ROM that features data sets and the full color maps produced by the use of GIS.
In this volume the relevance of fungi for agriculture is discussed in four sections. The first one 'Food and Fodder Production' concerns the application and potential of mushrooms, straw enrichment, and food or crop spoilage. The next section 'Mycotoxins and Detoxification' deals with the biosynthesis of mycotoxins and the use of fungi in organopollutant degradation. A large section entitled 'Disease Control, Diagnostic, and Management' covers various aspects of biological control (fungi, insects, and weeds), diagnostics with emphasis on the example of Magnaporthe grisea, and disease management with focus on the important fungal pathogens Phoma, Fusarium, rusts and powdery mildew. The last section 'Update on Host-Parasite Interactions' discusses signal transduction, avirulence determinants, phytotoxins, cell wall degradation, and the coevolution of pathogenic fungi and grass hosts.
This volume covers the high relevance of fungi for agriculture. It is a completely updated and revised second edition with fourteen excellent chapters by leading scientists in their fields and offers a comprehensive review of the latest achievements and developments. Topics include: Food and fodder; fungal secondary metabolites and detoxification; biology, disease control and management; symbiontic fungi and mycorrhiza; and phytopathogenicity.
Agricultural and Environmental Applications of Biochar: Advances and Barriers: Over the past decade, biochar has been intensively studied by agricultural and environmental scientists and applied as a soil quality enhancer and environmental ameliorator in various trials worldwide. This book, with 21 chapters by 57 accomplished international researchers, reports on the recent advances of biochar research and the global status of biochar application. Scientific findings, uncertainties, and barriers to practice of biochar amendment for sustaining soil fertility, improving crop production, promoting animal performance, remediating water and land, and mitigating greenhouse gas emissions are synthesized. The book presents a whole picture of biochar in its production, characterization, application, and development. Agricultural and Environmental Applications of Biochar: Advances and Barrier highlights the mechanisms and processes of biochar amendment for achieving stunning agricultural and environmental benefits. Composition and characteristics of biochar, its interactions with contaminants and soil constituents, and its transformation in the environment are illustrated to enlighten the achievements of biochar amendment in improving soil physical, chemical, and biological quality and animal health, reducing soil greenhouse gas emissions, and decontaminating stormwater and mine sites. Additional emphasis is given to the pyrogenic carbon in Terra Preta soils and Japanese Andosols, the pyrolysis technology for converting agricultural byproducts to biochar, and the existing economic and technical barriers to wide application of biochar in Australia, China, New Zealand, North America, and Europe. Readers will appreciate the comprehensive review on the up-to-date biochar research and application and gain critical guidance in best biochar generation and utilization.
Crop models and remote sensing techniques have been combined and applied in agriculture and crop estimation on local and regional scales, or worldwide, based on the simultaneous development of crop models and remote sensing. The literature shows that many new remote sensing sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. At the same time, remote sensing has been used in a staggering number of applications for agriculture. This book sets the context for remote sensing and modelling for agricultural systems as a mean to minimize the environmental impact, while increasing production and productivity. The eighteen papers published in this Special Issue, although not representative of all the work carried out in the field of Remote Sensing for agriculture and crop modeling, provide insight into the diversity and the complexity of developments of RS applications in agriculture. Five thematic focuses have emerged from the published papers: yield estimation, land cover mapping, soil nutrient balance, time-specific management zone delineation and the use of UAV as agricultural aerial sprayers. All contributions exploited the use of remote sensing data from different platforms (UAV, Sentinel, Landsat, QuickBird, CBERS, MODIS, WorldView), their assimilation into crop models (DSSAT, AQUACROP, EPIC, DELPHI) or on the synergy of Remote Sensing and modeling, applied to cardamom, wheat, tomato, sorghum, rice, sugarcane and olive. The intended audience is researchers and postgraduate students, as well as those outside academia in policy and practice.
Zinc-Based Nanostructures for Environmental and Agricultural Applications shows how zinc nanostructures are being used in agriculture, food and the environment. The book has been divided into two parts: Part I deals with the synthesis and characterization of zinc-based nanostructures such as biogenic, plant, microbial, and actinobacteria mediated synthesis of zinc nanoparticles, Part II is focused on agri-food applications such as antibacterial, antifungal, antimicrobial, plant disease management, controlling post-harvest diseases, pesticide sensing and degradations, plant promotions, ZnO nanostructure for food packaging application, safe animal food and feed supplement, elimination of mycotoxins, and veterinary applications. Part III reviews technological developments in environmental applications such as risks and benefits for aquatic organisms and the marine environment, antiseptic activity and toxicity mechanisms, wastewater treatment, and zinc oxide-based nanomaterials for photocatalytic degradation of environmental and agricultural pollutants. The book discusses various aspects, including the application of zinc-based nanostructures to enhance plant health and growth, the effect on soil microbial activity, antimicrobial mechanism, phytotoxicity and accumulation in plants, the possible impact of zinc-based nanostructures in the agricultural sector as nanofertilizer, enhancing crop productivity, and other possible antimicrobial mechanisms of ZnO nanomaterials. - Explores the impact of a large variety of zinc-based nanostructures on agri-food and environment sectors - Outlines how the properties of zinc-based nanostructures mean they are particularly efficient in environmental and agricultural application areas - Assesses the major challenges of synthesizing and processing zinc-based nanostructured materials
Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications explores the mycogenic synthesis of many metal nanoparticles, including processing processes, environmental protection, and future perspectives. Nanomaterials, including silver, gold, palladium, copper, zinc, selenium, titanium dioxide, metal sulphide, cellulose, have been formed by major fungal genes, such as mushrooms, Fusarium, Trichoderma, endophytic fungi, and yeast, in addition to lichens. Understanding the exact process involved in the synthesis of nanoparticles and the effects of various factors on the reduction of metal ions can help to improve low-cost strategies for the synthesis and extraction of nanoparticles. Other sections focus on a new framework for the production of nano-antimicrobial, the use of myconanoparticles against plant diseases, post-harvest antibiotics, mycotoxin control and plant pests in addition to certain animal pathogens. Myconanomaterials are well developed with great potential and promise for advanced diagnostics, biosensors, precision farming and targeted smart delivery systems. - Assesses the impact of a variety of copper-based nanostructures on agri-food sectors, addressing the most relevant knowledge gaps - Explores the opportunities that myconanotechnology can provide for industrial applications - Explains the major challenges of applying myconanotechnology at an industrial scale